Abstract
Pig kidney microvillar proteins were extracted with octyl beta-glucoside and reconstituted in liposomes prepared from microvillar lipids of known composition. Four peptidases, namely endopeptidase (EC 3.4.24.11), aminopeptidases N (EC 3.4.11.2) and A (EC 3.4.11.7) and dipeptidyl peptidase IV (EC 3.4.14.5), were shown to be reconstituted. At lipid/protein ratios greater than 4:1, about half the detergent-solubilized protein and nearly all of the activity of the four peptidases were reconstituted. Dissolution of the liposomes with Triton X-100 did not increase the activity of any of these peptidases, a result consistent with an asymmetric, 'right-side-out', orientation of these enzymes. When purified, endopeptidase was subjected to the same procedure; the two amphipathic forms of the enzyme (the detergent form and the trypsin-treated detergent form) were fully reconstituted. The amphiphilic form, purified after toluene/trypsin treatment, failed to reconstitute. Electron microscopy of microvilli showed that the appearance of the surface particles was profoundly altered by treatment with papain. Before treatment, the microvilli were coated with particles of stalk lengths ranging from 2.5 to 9 nm. After papain treatment nearly all the particles had stalks of 2-3 nm. Reconstituted microvillar proteins in liposomes showed the same heterogeneity of stalk length. In contrast, liposomes containing reconstituted endopeptidase revealed a very homogeneous population of particles of stalk length 2 nm. Since the smallest dimension of a papain molecule is 3.7 nm, the ability of papain, and other proteinases of similar molecular size, to release microvillar enzymes is crucially affected by the length of the junctional peptide that constitutes the stalk of this type of membrane protein.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Booth A. G., Hubbard L. M., Kenny A. J. Proteins of the kidney microvillar membrane. Immunoelectrophoretic analysis of the membrane hydrolases: identification and resolution of the detergent- and proteinase-solubilized forms. Biochem J. 1979 May 1;179(2):397–405. doi: 10.1042/bj1790397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Booth A. G., Kenny A. J. Proteins of the kidney microvillus membrane. Identification of subunits after sodium dodecylsullphate/polyacrylamide-gel electrophoresis. Biochem J. 1976 Nov;159(2):395–407. doi: 10.1042/bj1590395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunner J., Hauser H., Braun H., Wilson K. J., Wacker H., O'Neill B., Semenza G. The mode of association of the enzyme complex sucrase.isomaltase with the intestinal brush border membrane. J Biol Chem. 1979 Mar 25;254(6):1821–1828. [PubMed] [Google Scholar]
- Brunner J., Hauser H., Semenza G. Single bilayer lipid-protein vesicles formed from phosphatidylcholine and small intestinal sucrase.isomaltase. J Biol Chem. 1978 Oct 25;253(20):7538–7546. [PubMed] [Google Scholar]
- Crane R. K., Malathi P., Preiser H. Reconstitution of specific Na+-dependent D-glucose transport in liposomes by Triton X-100-extracted proteins from purified brush border membranes of rabbit kidney cortex. FEBS Lett. 1976 Aug 15;67(2):214–216. doi: 10.1016/0014-5793(76)80369-9. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Fulcher I. S., Kenny A. J. Proteins of the kidney microvillar membrane. The amphipathic forms of endopeptidase purified from pig kidneys. Biochem J. 1983 Jun 1;211(3):743–753. doi: 10.1042/bj2110743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glossmann H., Neville D. M., Jr Glycoproteins of cell surfaces. A comparative study of three different cell surfaces of the rat. J Biol Chem. 1971 Oct 25;246(20):6339–6346. [PubMed] [Google Scholar]
- Helenius A., Fries E., Kartenbeck J. Reconstitution of Semliki forest virus membrane. J Cell Biol. 1977 Dec;75(3):866–880. doi: 10.1083/jcb.75.3.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helenius A., Sarvas M., Simons K. Asymmetric and symmetric membrane reconstitution by detergent elimination. Studies with Semliki-Forest-virus spike glycoprotein and penicillinase from the membrane of Bacillus licheniformis. Eur J Biochem. 1981 May;116(1):27–35. doi: 10.1111/j.1432-1033.1981.tb05296.x. [DOI] [PubMed] [Google Scholar]
- Hussain M. M., Tranum-Jensen J., Norén O., Sjöström H., Christiansen K. Reconstitution of purified amphiphilic pig intestinal microvillus aminopeptidase. Mode of membrane insertion and morphology. Biochem J. 1981 Oct 1;199(1):179–186. doi: 10.1042/bj1990179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson C. F. Disaccharidase: localization in hamster intestine brush borders. Science. 1967 Mar 31;155(3770):1670–1672. doi: 10.1126/science.155.3770.1670. [DOI] [PubMed] [Google Scholar]
- Kenny A. J., Maroux S. Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev. 1982 Jan;62(1):91–128. doi: 10.1152/physrev.1982.62.1.91. [DOI] [PubMed] [Google Scholar]
- Koepsell H., Menuhr H., Wissmüller T. F., Ducis I., Haase W. Reconstitution of D-glucose transport and high-affinity phlorizin binding after solubilization of kidney brush border proteins. Ann N Y Acad Sci. 1980;358:267–281. doi: 10.1111/j.1749-6632.1980.tb15400.x. [DOI] [PubMed] [Google Scholar]
- Nishi Y., Yoshida T. O., Takesue Y. Electron microscope studies on the structure of rabbit intestinal sucrase. J Mol Biol. 1968 Nov 14;37(3):441–444. doi: 10.1016/0022-2836(68)90113-7. [DOI] [PubMed] [Google Scholar]
- Pattus F., Verger R., Desnuelle P. Comparative study of the interactions of the trypsin and detergent form of the intestinal aminopeptidase with liposomes. Biochem Biophys Res Commun. 1976 Apr 5;69(3):718–723. doi: 10.1016/0006-291x(76)90934-7. [DOI] [PubMed] [Google Scholar]
- Quirk S. J., Robinson G. B. Isolation and characterization of rabbit kidney brush borders. Biochem J. 1972 Aug;128(5):1319–1328. doi: 10.1042/bj1281319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rostgaard J., Thuneberg L. Electron microscopical observations on the brush border of proximal tubule cells of mammalian kidney. Z Zellforsch Mikrosk Anat. 1972;132(4):473–496. doi: 10.1007/BF00306637. [DOI] [PubMed] [Google Scholar]
- SEARCY R. L., BERGQUIST L. M., JUNG R. C. Rapid ultramicro estimation of serum total cholesterol. J Lipid Res. 1960 Jul;1:349–351. [PubMed] [Google Scholar]
- Wacker H., Müller F., Semenza G. Incorporation of hydrophobic aminopeptidase from hog kidney into egg lecithin liposomes: number and orientation of aminopeptidase molecules in the lecithin vesicles. FEBS Lett. 1976 Sep 15;68(1):145–152. doi: 10.1016/0014-5793(76)80424-3. [DOI] [PubMed] [Google Scholar]
- Warren G. B., Toon P. A., Birdsall N. J., Lee A. G., Metcalfe J. C. Reconstitution of a calcium pump using defined membrane components. Proc Natl Acad Sci U S A. 1974 Mar;71(3):622–626. doi: 10.1073/pnas.71.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]



