Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 May 15;477(Pt 1):149–159. doi: 10.1113/jphysiol.1994.sp020179

K+ shifts of skeletal muscle during stepwise bicycle exercise with and without beta-adrenoceptor blockade.

J Hallén 1, L Gullestad 1, O M Sejersted 1
PMCID: PMC1155582  PMID: 8071881

Abstract

1. K+ efflux rate and control of K+ reuptake rate in exercising muscle cells was examined in six healthy female volunteers. 2. A K(+)-selective electrode in the femoral vein continuously monitored K+ concentration ([K+]fv) during bicycling. Power was increased stepwise 5-6 times by 30-40 W every fourth minute until exhaustion before and after I.V. administration of propranolol. Leg blood flow was measured by bolus injections of Cardiogreen. 3. [K+]fv increased from about 4.3 to 6.8 mmol l-1 at exhaustion both before and after propranolol administration, but after drug infusion endurance was reduced from 22.2 +/- 0.6 to 19.7 +/- 1.1 min, so [K+]fv rose more rapidly. 4. The exercise-induced efflux rate of K+ from the muscle cells was estimated to be about 11 mumol kg-1s-1 at exhaustion both before and after propranolol administration. 5. As an indicator of rate of net loss of K+ from the leg, veno-arterial concentration differences ([K+]fv-a) during first, fourth and fifth power increments were high after 15 and 40 s, but declined toward the end of each power step. Propranolol accentuated [K+]fv-a only after 15 and 40 s of the first and fourth increments. 6. The exercise-induced increase in reuptake rate of K+ in the muscle, estimated at exhaustion, was not significantly changed by propranolol and was about 10 mumol kg-1s-1, corresponding to about 15% of maximum Na(+)-K+ pump capacity in man. 7. Extracellular accumulation and loss of K+ from muscle during bicycle exercise is due to Na(+)-K+ pump lag. The higher [K+]fv during propranolol is mainly due to impaired redistribution outside the exercising muscles. In addition at low powers, beta-adrenoceptor blockade caused a transiently increased net loss due to an accentuated Na(+)-K+ pump lag.

Full text

PDF
149

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen P., Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985 Sep;366:233–249. doi: 10.1113/jphysiol.1985.sp015794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blum H., Nioka S., Johnson R. G., Jr Activation of the Na+, K(+)-ATPase in Narcine brasiliensis. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1247–1251. doi: 10.1073/pnas.87.3.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clausen T., Everts M. E. Is the Na,K-pump capacity in skeletal muscle inadequate during sustained work? Prog Clin Biol Res. 1988;268B:239–244. [PubMed] [Google Scholar]
  4. Clausen T., Everts M. E., Kjeldsen K. Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle. J Physiol. 1987 Jul;388:163–181. doi: 10.1113/jphysiol.1987.sp016608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clausen T., Everts M. E. Regulation of the Na,K-pump in skeletal muscle. Kidney Int. 1989 Jan;35(1):1–13. doi: 10.1038/ki.1989.1. [DOI] [PubMed] [Google Scholar]
  6. Clausen T., Flatman J. A. Beta 2-adrenoceptors mediate the stimulating effect of adrenaline on active electrogenic Na-K-transport in rat soleus muscle. Br J Pharmacol. 1980 Apr;68(4):749–755. doi: 10.1111/j.1476-5381.1980.tb10868.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clausen T., Flatman J. A. The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle. J Physiol. 1977 Sep;270(2):383–414. doi: 10.1113/jphysiol.1977.sp011958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellingsen O., Sejersted O. M., Leraand S., Ilebekk A. Catecholamine-induced myocardial potassium uptake mediated by beta 1-adrenoceptors and adenylate cyclase activation in the pig. Circ Res. 1987 Apr;60(4):540–550. doi: 10.1161/01.res.60.4.540. [DOI] [PubMed] [Google Scholar]
  9. Ellingsen O., Sejersted O. M., Vengen O. A., Ilebekk A. In-vivo quantification of myocardial Na-K pump rate during beta-adrenergic stimulation of intact pig hearts. Acta Physiol Scand. 1989 Apr;135(4):493–503. doi: 10.1111/j.1748-1716.1989.tb08608.x. [DOI] [PubMed] [Google Scholar]
  10. Everts M. E., Retterstøl K., Clausen T. Effects of adrenaline on excitation-induced stimulation of the sodium-potassium pump in rat skeletal muscle. Acta Physiol Scand. 1988 Oct;134(2):189–198. doi: 10.1111/j.1748-1716.1988.tb08479.x. [DOI] [PubMed] [Google Scholar]
  11. Fellenius E. Muscle fatigue and beta-blockers--a review. Int J Sports Med. 1983 Feb;4(1):1–8. doi: 10.1055/s-2008-1026008. [DOI] [PubMed] [Google Scholar]
  12. Gerdle B., Hedberg R., Jonsson B., Fugl-Meyer A. R. Mean power frequency and integrated electromyogram of repeated isokinetic plantar flexions. Acta Physiol Scand. 1987 Jul;130(3):501–506. doi: 10.1111/j.1748-1716.1987.tb08168.x. [DOI] [PubMed] [Google Scholar]
  13. Gregor R. J., Komi P. V., Järvinen M. Achilles tendon forces during cycling. Int J Sports Med. 1987 Mar;8 (Suppl 1):9–14. doi: 10.1055/s-2008-1025698. [DOI] [PubMed] [Google Scholar]
  14. Gullestad L., Birkeland K., Nordby G., Larsen S., Kjekshus J. Effects of selective beta 2-adrenoceptor blockade on serum potassium and exercise performance in normal men. Br J Clin Pharmacol. 1991 Aug;32(2):201–207. doi: 10.1111/j.1365-2125.1991.tb03882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gullestad L., Dolva L. O., Nordby G., Skaaraas K., Larsen S., Kjekshus J. The importance of potassium and lactate for maximal exercise performance during beta blockade. Scand J Clin Lab Invest. 1989 Oct;49(6):521–528. doi: 10.3109/00365518909089131. [DOI] [PubMed] [Google Scholar]
  16. Gullestad L., Hallén J., Sejersted O. M. Variable effects of beta-adrenoceptor blockade on muscle blood flow during exercise. Acta Physiol Scand. 1993 Nov;149(3):257–271. doi: 10.1111/j.1748-1716.1993.tb09621.x. [DOI] [PubMed] [Google Scholar]
  17. Hallén J., Sejersted O. M. Intravasal use of pliable K(+)-selective electrodes in the femoral vein of humans during exercise. J Appl Physiol (1985) 1993 Nov;75(5):2318–2325. doi: 10.1152/jappl.1993.75.5.2318. [DOI] [PubMed] [Google Scholar]
  18. Hjemdahl P., Daleskog M., Kahan T. Determination of plasma catecholamines by high performance liquid chromatography with electrochemical detection: comparison with a radioenzymatic method. Life Sci. 1979 Jul 9;25(2):131–138. doi: 10.1016/0024-3205(79)90384-9. [DOI] [PubMed] [Google Scholar]
  19. Hjemdahl P. Plasma catecholamines--analytical challenges and physiological limitations. Baillieres Clin Endocrinol Metab. 1993 Apr;7(2):307–353. doi: 10.1016/s0950-351x(05)80179-x. [DOI] [PubMed] [Google Scholar]
  20. Häggendal J., Hartley L. H., Saltin B. Arterial noradrenaline concentration during exercise in relation to the relative work levels. Scand J Clin Lab Invest. 1970 Dec;26(4):337–342. doi: 10.3109/00365517009046242. [DOI] [PubMed] [Google Scholar]
  21. Juel C., Bangsbo J., Graham T., Saltin B. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta Physiol Scand. 1990 Oct;140(2):147–159. doi: 10.1111/j.1748-1716.1990.tb08986.x. [DOI] [PubMed] [Google Scholar]
  22. Langer G. A. The 'sodium pump lag' revisited. J Mol Cell Cardiol. 1983 Oct;15(10):647–651. doi: 10.1016/0022-2828(83)90254-7. [DOI] [PubMed] [Google Scholar]
  23. Medbø J. I., Sejersted O. M. Plasma potassium changes with high intensity exercise. J Physiol. 1990 Feb;421:105–122. doi: 10.1113/jphysiol.1990.sp017935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nørgaard A., Kjeldsen K., Clausen T. A method for the determination of the total number of 3H-ouabain binding sites in biopsies of human skeletal muscle. Scand J Clin Lab Invest. 1984 Oct;44(6):509–518. doi: 10.3109/00365518409083604. [DOI] [PubMed] [Google Scholar]
  25. RENKIN E. M. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol. 1959 Dec;197:1205–1210. doi: 10.1152/ajplegacy.1959.197.6.1205. [DOI] [PubMed] [Google Scholar]
  26. Sahlin K., Broberg S. Release of K+ from muscle during prolonged dynamic exercise. Acta Physiol Scand. 1989 Jun;136(2):293–294. doi: 10.1111/j.1748-1716.1989.tb08666.x. [DOI] [PubMed] [Google Scholar]
  27. Sejersted O. M., Wasserstrom J. A., Fozzard H. A. Na,K pump stimulation by intracellular Na in isolated, intact sheep cardiac Purkinje fibers. J Gen Physiol. 1988 Mar;91(3):445–466. doi: 10.1085/jgp.91.3.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sheehan R. M., Renkin E. M. Capillary, interstitial, and cell membrane barriers to blood-tissue transport of potassium and rubidium in mammalian skeletal muscle. Circ Res. 1972 May;30(5):588–607. doi: 10.1161/01.res.30.5.588. [DOI] [PubMed] [Google Scholar]
  29. Sjøgaard G., Saltin B. Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. Am J Physiol. 1982 Sep;243(3):R271–R280. doi: 10.1152/ajpregu.1982.243.3.R271. [DOI] [PubMed] [Google Scholar]
  30. Thomas C. K., Bigland-Richie B., Johansson R. S. Force-frequency relationships of human thenar motor units. J Neurophysiol. 1991 Jun;65(6):1509–1516. doi: 10.1152/jn.1991.65.6.1509. [DOI] [PubMed] [Google Scholar]
  31. Vøllestad N. K., Hallén J., Sejersted O. M. Effect of exercise intensity on potassium balance in muscle and blood of man. J Physiol. 1994 Mar 1;475(2):359–368. doi: 10.1113/jphysiol.1994.sp020077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. WOODBURY J. W. Interrelationships between ion transport mechanisms and excitatory events. Fed Proc. 1963 Jan-Feb;22:31–35. [PubMed] [Google Scholar]
  33. Walløe L., Wesche J. Time course and magnitude of blood flow changes in the human quadriceps muscles during and following rhythmic exercise. J Physiol. 1988 Nov;405:257–273. doi: 10.1113/jphysiol.1988.sp017332. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES