Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2024 Oct 4;13(11):e00505-24. doi: 10.1128/mra.00505-24

Antibiotic resistance and draft genome profiles of 10 Streptococcus pneumoniae and 3 Streptococcus pseudopneumoniae strains isolated from the nasopharynx of people living with human immunodeficiency virus in Ghana

Lawrencia Ami Emefa Ativi 1,#, Mildred Adusei-Poku 1,#, William Boateng 2,#, Christian Owusu-Nyantantakyi 2, Justice Kwesi Danso 2, Agnes Oclu 2, Alfred Bortey 2, Grebstad Rabbi Amuasi 2, Blessing Kofi Adu Tabi 2, Elijah Paintsil 3, Kwasi Torpey 4, Nicholas Dzifa Dayie 1, Beverly Egyir 2,
Editor: Catherine Putonti5
PMCID: PMC11556032  PMID: 39365088

ABSTRACT

Genomic data on clinically important bacteria species such as Streptococcus pneumoniae and Streptococcus pseudopneumoniae from low- and middle-income countries, including Ghana, are scarce. In this study, we provide data on antimicrobial resistance (AMR) and whole-genome profiles of a collection of streptococci species to support AMR surveillance efforts in the country.

KEYWORDS: Africa, Streptococcus pneumoniae, S. pseudopneumoniae

ANNOUNCEMENT

Streptococci are a major cause of a wide range of diseases including pneumoniae, bacteremia, and meningitis (1). The similarities between Streptococcus pseudopneumoniae and Streptococcus pneumoniae make distinguishing them using traditional typing methods challenging (2, 3). Information on the epidemiology and genomic characteristics of S. pseudopneumoniae is scarce in sub-Saharan countries, including Ghana. Like S. pneumoniae, S. pseudopneumoniae is frequently associated with high rates of antimicrobial resistance, particularly to penicillin, macrolides, co-trimoxazole, and tetracycline (3). This article details the antimicrobial susceptibility and genomic profiles of 10 S. pneumoniae and 3 S. pseudopneumoniae isolates recovered from nasopharyngeal swabs collected from HIV-positive individuals during a cross-sectional study conducted at three hospitals in the Greater Accra Region of Ghana: University of Ghana Hospital, LEKMA Hospital, and Korle Bu Teaching Hospital. The study received approval from the University of Ghana, College of Health Sciences Ethical and Protocol Review Committee (Protocol number: CHS-Et/M.7-P 4.3/2022–2023). The nasopharyngeal swab samples were plated on 5% sheep blood agar (Oxoid) and incubated anaerobically for 24 hours at 37°C. Bacteria identification was done using the matrix-assisted laser desorption/ionization-time-of-flight mass spectrometer. Antimicrobial susceptibility testing was performed on MH agar with 5% sheep blood using seven antibiotics (chloramphenicol, clindamycin, erythromycin, linezolid, tetracycline, trimethoprim-sulfamethoxazole, and vancomycin) in a disk diffusion assay and interpreted according to the Clinical Laboratory Standards Institute guidelines (CLSI, 2023). S. pneumoniae ATCC 49619 strain was used as control.

Following the manufacturer’s instructions, DNA was extracted from pure overnight cultures using the QIAamp DNA Mini Kit (Qiagen, Germany) after suspending the colonies in lysozyme. The extracted DNA was then quantified using the Qubit 4.0 fluorometer and the High Sensitivity dsDNA Assay Kit. Libraries were generated using the Illumina DNA library preparation kit (Illumina Inc., San Diego, CA, USA). The quality and concentration of the libraries were subsequently assessed using the 2100 bioanalyzer system (Agilent) and Qubit 4.0 fluorometer, respectively. The libraries underwent dilution to reach a concentration of 2 nM, subsequently pooled, and subjected to sequencing on the Illumina Miseq platform (Illumina Inc., San Diego, CA) using a 2 × 300 bp chemistry. After sequencing, Trimmomatic v.0.39 (4) was employed in the trimming of adaptors and reads with a quality score below 20. FastQC v.1.0 (https://www.bioinformatics.babraham.ac.uk) was used in the quality control checks of the reads. Unicycler v.0.5.0 (5) was used in the assembly of the trimmed reads and subsequently assessed using Quast v.5.2.0 (6). All genomes had a Q-score greater than 30, a minimum coverage of 40×, less than 300 contigs, and a minimum contig size exceeding 200 bp. Post assembly, KmerFinder v.4.1 (https://cge.food.dtu.dk/services/KmerFinder/) (7) was employed in bacterial species identification. ResFinder v.4.1 (https://cge.food.dtu.dk/services/ResFinder/) (8), CARD v.3.2.9 (https://card.mcmaster.ca/) (9), VirulenceFinder v.2.0 (https://cge.food.dtu.dk/services/VirulenceFinder/) (10), and MLST v.2.0 (https://cge.food.dtu.dk/services/MLST/) (11) were used in the determination of sequence types, resistance, and virulence genes using default settings. The assembled genomes were annotated using Prokka v.1.14.6 (12).

ACKNOWLEDGMENTS

Participant recruitment was funded by HIV Co-morbidities Research Training in Ghana program (HIV-ComRT). Antimicrobial susceptibility testing was supported by CAPREX project (RY89). Culture, identification, and whole-genome sequencing were supported by SeqAfrica (FF RGR2 FF25) project, funded by the Department of Health and Social Care’s Fleming Fund using UK aid.

The views expressed in this publication are those of the authors and not necessarily those of the UK Department.

Contributor Information

Beverly Egyir, Email: beverlyegyir@gmail.com, begyir@noguchi.ug.edu.gh.

Catherine Putonti, Loyola University Chicago, Chicago, Illinois, USA.

DATA AVAILABILITY

The genomes were deposited in the National Center for Biotechnology Information database with BioProject number PRJNA952500. Table 1 summarizes the antibiotic profile and genomic characteristics of the isolates.

TABLE 1.

Antimicrobial resistance profiles and genomic characteristics of isolatesa

Isolate ID Strain Hospital Genome accession no. SRA accession no. Biosample accession no. Antibiotic resistance profile Resistance genes Virulence genes Sequence type Coverage (×) Genome size (bp) No. of contigs N50 (bp) GC content (%) No. of reads No. of CDS No. of genes No. of rRNA No. of tRNA No. of tmRNA
S. pneumoniae
 HRV-23–022 SA1 LEKMA JARUNO000000000 SRR24071752 SAMN34074645 ERY, CLI, TE, and SXT erm(B), mef(A), msr(D), tet(M), patA, patB, pmrA, and VanY cbpD, cbpG, lytA, lytB, lytC, pce/cbpE, pspA, pspC/cbpA, pavA, lmb, srtA, rrgA, plr/gapA, rrgB, rrgC, srtB, srtC, srtD, hysA, nanA, eno, piaA, piuA, psaA, cppA, iga, htrA/degP, tig/ropA, zmpB, and ply ST320 84 2,048,242 77 71,641 39.7 1,102,816 1,994 2,033 3 35 1
 HRV-23-D44 SA3 LEKMA JARUNM000000000 SRR24071750 SAMN34074647 SXT patA, patB, pmrA, and VanY cbpD, cbpG, lytB, lytC, pce/cbpE, pspA, pspC/cbpA, pavA, lmb, srtA, slrA, plr/gapA, cla, nanA, eno, piaA, piuA, psaA, cppA, iga, htrA/degP, tig/ropA, zmpB, and ply ST17228 104 2,149,241 75 89,076 39.4 1,448,104 2,127 2,167 3 36 1
 HRV-23–111 SA4 KBTH JBBKAG000000000 SRR28419022 SAMN40566640 TE and SXT patA, patB, pmrA, and tet(M) cbpD, cps4A, cps4B, hysA, lytA, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST172 47 2,135,800 82 52,858 39.5 498,944 2,110 2,149 3 35 1
 HRV-23–147 SA5 LEKMA JBBKAF000000000 SRR28419021 SAMN40566641 TE patA, patB, pmrA, and tet(M) cbpD, cbpG, cps4A, cps4B, cps4C, cps4D, hysA, lytA, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST18370 67 2,025,352 137 44,799 39.7 616,808 1,955 1,989 3 30 1
 HRV-23–148 SA6 LEKMA JBBKAE000000000 SRR28419019 SAMN40566642 C, TE, and SXT patA, patB, pmrA, cat(pC194), and tet(M) cbpD, cps4A, cps4B, cps4C, cps4D, hysA, lytA, lytC, nanB, pavA, pce, ply, psaA, rrgA, rrgC, srtC-1/srtB, srtC-2/srtC, and srtC-3/srtD ST802 94 2,160,343 68 77,187 39.4 971,194 2,150 2,191 3 37 1
 HRV-23–167 SA7 KBTH JBBKAD000000000 SRR28419018 SAMN40566643 TE and SXT patA, patB, pmrA, and tet(M) cbpD, cbpG, cps4A, cps4B, cps4C, cps4D, hysA, lytA, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST18372 40 2,050,151 104 42,645 39.6 435,710 2,024 2,060 3 32 1
 HRV-23–33 SA8 LEKMA JBBKAC000000000 SRR28419017 SAMN40566644 C, TE, and SXT patA, patB, pmrA, and tet(M) cbpD, cbpG, cps4A, cps4B, cps4C, cps4D, hysA, lytA, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST18370 98 2,052,594 79 90,420 39.7 881,934 2,003 2,055 3 37 1
 HRV-23–443 SA9 LEKMA JBBKAB000000000 SRR28419016 SAMN40566645 TE and SXT patA, patB, pmrA, and tet(M) cbpD, cbpG, hysA, lytA, lytB, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST700 101 2,057,773 69 82,415 39.5 970,696 2,016 2,055 3 35 1
 HRV-23–66 SA10 LEKMA JBBKAA000000000 SRR28419015 SAMN40566646 C, TE, and SXT patA, patB, pmrA, cat(pC194), and tet(M) cbpD, cbpG, hysA, lytA, lytC, nanB, pce, pfbA, ply, psaA, and pspC/cbpA ST13456 47 2,052,751 84 39,511 39.6 464,844 2,001 2,035 3 30 1
 HRV-23–71 SA11 LEKMA JBBJZZ000000000 SRR28419014 SAMN40566647 TE and SXT patA, patB, pmrA, and tet(M) cbpD, cbpG, cps4A, cps4B, cps4C, cps4D, hysA, lytA, lytB, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST18376 84 2,115,087 90 64,833 39.5 847,416 2,083 2,120 3 33 1
S. pseudopneumoniae
 HRV-23–029 SA12 LEKMA JBBJZY000000000 SRR28419013 SAMN40566648 ERY, CLI, and SXT patB cbpD, lytA, lytC, pavA, pce, ply, and psaA UNK 46 1,941,672 47 75,591 40.3 387,928 1,769 1,795 2 25 1
 HRV-23–34 SA13 LEKMA JBBJZX000000000 SRR28419012 SAMN40566649 TE and SXT patA, patB, pmrA, and tet(M) cbpD, hysA, lytC, pavA, pce, and psaA UNK 91 2,155,673 292 20,469 39.9 918,962 1,983 1,999 2 13 1
 HRV-23–36 SA14 LEKMA JBBJZW000000000 SRR28419020 SAMN40566650 TE and SXT hysA, lytA, lytC, pavA, pce, ply, and psaA patA, patB, pmrA, and tet(M) UNK 135 2,057,522 45 131,504 40.0 1,208,424 1,876 1,917 2 38 1
a

ERY, erythromycin; CLI, clindamycin; TE, tetracycline; SXT, trimethoprim-sulfamethoxazole; C, chloramphenicol; UKN, unknown; LEKMA, LEKMA Hospital; KBTH, Korle Bu Teaching Hospital.

REFERENCES

  • 1. Sadowy E, Hryniewicz W. 2020. Identification of Streptococcus pneumoniae and other Mitis streptococci: importance of molecular methods. Eur J Clin Microbiol Infect Dis 39:2247–2256. doi: 10.1007/s10096-020-03991-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Bogaerts B, Winand R, Van Braekel J, Hoffman S, Roosens NHC, De Keersmaecker SCJ, Marchal K, Vanneste K. 2021. Evaluation of WGS performance for bacterial pathogen characterization with the Illumina technology optimized for time-critical situations. Microb Genom 7:000699. doi: 10.1099/mgen.0.000699 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Garriss G, Nannapaneni P, Simões AS, Browall S, Subramanian K, Sá-Leão R, Goossens H, de Lencastre H, Henriques-Normark B. 2019. Genomic characterization of the emerging pathogen Streptococcus pseudopneumoniae. MBio 10:e01286-19. doi: 10.1128/mBio.01286-19 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. doi: 10.1371/journal.pcbi.1005595 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Hasman H, Saputra D, Sicheritz-Ponten T, Lund O, Svendsen CA, Frimodt-Møller N, Aarestrup FM. 2014. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol 52:139–146. doi: 10.1128/JCM.02452-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Florensa AF, Kaas RS, Clausen P, Aytan-Aktug D, Aarestrup FM. 2022. ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb Genom 8:1–10. doi: 10.1099/mgen.0.000748 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, Edalatmand A, Petkau A, Syed SA, Tsang KK, et al. 2023. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 51:D690–D699. doi: 10.1093/nar/gkac920 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510. doi: 10.1128/JCM.03617-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361. doi: 10.1128/JCM.06094-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153 [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The genomes were deposited in the National Center for Biotechnology Information database with BioProject number PRJNA952500. Table 1 summarizes the antibiotic profile and genomic characteristics of the isolates.

TABLE 1.

Antimicrobial resistance profiles and genomic characteristics of isolatesa

Isolate ID Strain Hospital Genome accession no. SRA accession no. Biosample accession no. Antibiotic resistance profile Resistance genes Virulence genes Sequence type Coverage (×) Genome size (bp) No. of contigs N50 (bp) GC content (%) No. of reads No. of CDS No. of genes No. of rRNA No. of tRNA No. of tmRNA
S. pneumoniae
 HRV-23–022 SA1 LEKMA JARUNO000000000 SRR24071752 SAMN34074645 ERY, CLI, TE, and SXT erm(B), mef(A), msr(D), tet(M), patA, patB, pmrA, and VanY cbpD, cbpG, lytA, lytB, lytC, pce/cbpE, pspA, pspC/cbpA, pavA, lmb, srtA, rrgA, plr/gapA, rrgB, rrgC, srtB, srtC, srtD, hysA, nanA, eno, piaA, piuA, psaA, cppA, iga, htrA/degP, tig/ropA, zmpB, and ply ST320 84 2,048,242 77 71,641 39.7 1,102,816 1,994 2,033 3 35 1
 HRV-23-D44 SA3 LEKMA JARUNM000000000 SRR24071750 SAMN34074647 SXT patA, patB, pmrA, and VanY cbpD, cbpG, lytB, lytC, pce/cbpE, pspA, pspC/cbpA, pavA, lmb, srtA, slrA, plr/gapA, cla, nanA, eno, piaA, piuA, psaA, cppA, iga, htrA/degP, tig/ropA, zmpB, and ply ST17228 104 2,149,241 75 89,076 39.4 1,448,104 2,127 2,167 3 36 1
 HRV-23–111 SA4 KBTH JBBKAG000000000 SRR28419022 SAMN40566640 TE and SXT patA, patB, pmrA, and tet(M) cbpD, cps4A, cps4B, hysA, lytA, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST172 47 2,135,800 82 52,858 39.5 498,944 2,110 2,149 3 35 1
 HRV-23–147 SA5 LEKMA JBBKAF000000000 SRR28419021 SAMN40566641 TE patA, patB, pmrA, and tet(M) cbpD, cbpG, cps4A, cps4B, cps4C, cps4D, hysA, lytA, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST18370 67 2,025,352 137 44,799 39.7 616,808 1,955 1,989 3 30 1
 HRV-23–148 SA6 LEKMA JBBKAE000000000 SRR28419019 SAMN40566642 C, TE, and SXT patA, patB, pmrA, cat(pC194), and tet(M) cbpD, cps4A, cps4B, cps4C, cps4D, hysA, lytA, lytC, nanB, pavA, pce, ply, psaA, rrgA, rrgC, srtC-1/srtB, srtC-2/srtC, and srtC-3/srtD ST802 94 2,160,343 68 77,187 39.4 971,194 2,150 2,191 3 37 1
 HRV-23–167 SA7 KBTH JBBKAD000000000 SRR28419018 SAMN40566643 TE and SXT patA, patB, pmrA, and tet(M) cbpD, cbpG, cps4A, cps4B, cps4C, cps4D, hysA, lytA, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST18372 40 2,050,151 104 42,645 39.6 435,710 2,024 2,060 3 32 1
 HRV-23–33 SA8 LEKMA JBBKAC000000000 SRR28419017 SAMN40566644 C, TE, and SXT patA, patB, pmrA, and tet(M) cbpD, cbpG, cps4A, cps4B, cps4C, cps4D, hysA, lytA, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST18370 98 2,052,594 79 90,420 39.7 881,934 2,003 2,055 3 37 1
 HRV-23–443 SA9 LEKMA JBBKAB000000000 SRR28419016 SAMN40566645 TE and SXT patA, patB, pmrA, and tet(M) cbpD, cbpG, hysA, lytA, lytB, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST700 101 2,057,773 69 82,415 39.5 970,696 2,016 2,055 3 35 1
 HRV-23–66 SA10 LEKMA JBBKAA000000000 SRR28419015 SAMN40566646 C, TE, and SXT patA, patB, pmrA, cat(pC194), and tet(M) cbpD, cbpG, hysA, lytA, lytC, nanB, pce, pfbA, ply, psaA, and pspC/cbpA ST13456 47 2,052,751 84 39,511 39.6 464,844 2,001 2,035 3 30 1
 HRV-23–71 SA11 LEKMA JBBJZZ000000000 SRR28419014 SAMN40566647 TE and SXT patA, patB, pmrA, and tet(M) cbpD, cbpG, cps4A, cps4B, cps4C, cps4D, hysA, lytA, lytB, lytC, nanB, pavA, pce, pfbA, ply, and psaA ST18376 84 2,115,087 90 64,833 39.5 847,416 2,083 2,120 3 33 1
S. pseudopneumoniae
 HRV-23–029 SA12 LEKMA JBBJZY000000000 SRR28419013 SAMN40566648 ERY, CLI, and SXT patB cbpD, lytA, lytC, pavA, pce, ply, and psaA UNK 46 1,941,672 47 75,591 40.3 387,928 1,769 1,795 2 25 1
 HRV-23–34 SA13 LEKMA JBBJZX000000000 SRR28419012 SAMN40566649 TE and SXT patA, patB, pmrA, and tet(M) cbpD, hysA, lytC, pavA, pce, and psaA UNK 91 2,155,673 292 20,469 39.9 918,962 1,983 1,999 2 13 1
 HRV-23–36 SA14 LEKMA JBBJZW000000000 SRR28419020 SAMN40566650 TE and SXT hysA, lytA, lytC, pavA, pce, ply, and psaA patA, patB, pmrA, and tet(M) UNK 135 2,057,522 45 131,504 40.0 1,208,424 1,876 1,917 2 38 1
a

ERY, erythromycin; CLI, clindamycin; TE, tetracycline; SXT, trimethoprim-sulfamethoxazole; C, chloramphenicol; UKN, unknown; LEKMA, LEKMA Hospital; KBTH, Korle Bu Teaching Hospital.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES