Abstract
1. In the present study the relation between regional left ventricular contractile work, regional myocardial blood flow and oxygen uptake was assessed during asynchronous electrical activation. 2. In analogy to the use of the pressure-volume area for the estimation of global oxygen demand, the fibre stress-fibre strain area, as assessed regionally, was used to estimate regional oxygen demand. The more often used relation between the pressure-sarcomere length area and regional oxygen demand was also assessed. 3. Experiments were performed in six anaesthetized dogs with open chests. Regional differences in mechanical work were generated by asynchronous electrical activation of the myocardial wall. The ventricles were paced from the right atrium, the left ventricular free wall, the left ventricular apex or the right ventricular outflow tract. Regional fibre strain was measured at the epicardial anterior left ventricular free wall with a two-dimensional video technique. 4. Regional fibre stress was estimated from left ventricular pressure, the ratio of left ventricular cavity volume to wall volume, and regional deformation. Total mechanical power (TMP) was calculated from the fibre stress-fibre strain area (SSA) and the duration of the cardiac cycle (tcycle) using the equation: TMP = SSA/tcycle. Regional myocardial blood flow was measured with radioactive microspheres. Regional oxygen uptake was estimated from regional myocardial blood flow values and arteriovenous differences in oxygen content. 5. During asynchronous electrical activation, total mechanical power, pressure-sarcomere length area, myocardial blood flow and oxygen uptake were significantly lower in early than in late activated regions (P < 0.05). 6. Within the experiments, the correlation between the pressure-sarcomere length area and regional oxygen uptake was not significantly lower than the one between total mechanical power (TMP) and regional oxygen uptake (VO2,reg). However, variability of this relation between the experiments was less for total mechanical power. Pooling all experimental data revealed: VO2,reg = k1 TMP+k2, with k1 = 4.94 +/- 0.31 mol J-1 k2 = 24.2 +/- 1.9 mmol m-3 s-1 (means +/- standard error of the estimate). 7. This relation is in quantitative agreement with previously reported relations between the pressure-volume area and global oxygen demand. The results indicate that asynchronous electrical activation causes a redistribution of mechanical work and oxygen demand and that regional total mechanical power is a better and more general estimate of regional oxygen demand than the regional pressure-sarcomere length area.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allessie M. A., Hoeks A. P., Schmitz G. M., Reneman R. S. On-line mapping system for the visualization of the electrical activation of the heart. Int J Card Imaging. 1986;2(1):59–63. doi: 10.1007/BF01553938. [DOI] [PubMed] [Google Scholar]
- Arts T., Bovendeerd P. H., Prinzen F. W., Reneman R. S. Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J. 1991 Jan;59(1):93–102. doi: 10.1016/S0006-3495(91)82201-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arts T., Reneman R. S. Measurement of deformation of canine epicardium in vivo during cardiac cycle. Am J Physiol. 1980 Sep;239(3):H432–H437. doi: 10.1152/ajpheart.1980.239.3.H432. [DOI] [PubMed] [Google Scholar]
- Arts T., Veenstra P. C., Reneman R. S. Epicardial deformation and left ventricular wall mechanisms during ejection in the dog. Am J Physiol. 1982 Sep;243(3):H379–H390. doi: 10.1152/ajpheart.1982.243.3.H379. [DOI] [PubMed] [Google Scholar]
- Badke F. R., Boinay P., Covell J. W. Effects of ventricular pacing on regional left ventricular performance in the dog. Am J Physiol. 1980 Jun;238(6):H858–H867. doi: 10.1152/ajpheart.1980.238.6.H858. [DOI] [PubMed] [Google Scholar]
- Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol. 1971 Apr;27(4):416–432. doi: 10.1016/0002-9149(71)90439-5. [DOI] [PubMed] [Google Scholar]
- Chadwick R. S. Mechanics of the left ventricle. Biophys J. 1982 Sep;39(3):279–288. doi: 10.1016/S0006-3495(82)84518-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delhaas T., Arts T., Bovendeerd P. H., Prinzen F. W., Reneman R. S. Subepicardial fiber strain and stress as related to left ventricular pressure and volume. Am J Physiol. 1993 May;264(5 Pt 2):H1548–H1559. doi: 10.1152/ajpheart.1993.264.5.H1548. [DOI] [PubMed] [Google Scholar]
- Delhaas T., Arts T., Prinzen F. W., Reneman R. S. Relation between regional electrical activation time and subepicardial fiber strain in the canine left ventricle. Pflugers Arch. 1993 Apr;423(1-2):78–87. doi: 10.1007/BF00374964. [DOI] [PubMed] [Google Scholar]
- Feigl E. O. Coronary physiology. Physiol Rev. 1983 Jan;63(1):1–205. doi: 10.1152/physrev.1983.63.1.1. [DOI] [PubMed] [Google Scholar]
- Feigl E. O., Simon G. A., Fry D. L. Auxotonic and isometric cardiac force transducers. J Appl Physiol. 1967 Oct;23(4):597–600. doi: 10.1152/jappl.1967.23.4.597. [DOI] [PubMed] [Google Scholar]
- Gallagher K. P., Osakada G., Matsuzaki M., Kemper W. S., Ross J., Jr Myocardial blood flow and function with critical coronary stenosis in exercising dogs. Am J Physiol. 1982 Nov;243(5):H698–H707. doi: 10.1152/ajpheart.1982.243.5.H698. [DOI] [PubMed] [Google Scholar]
- Goto Y., Slinker B. K., LeWinter M. M. Similar normalized Emax and O2 consumption-pressure-volume area relation in rabbit and dog. Am J Physiol. 1988 Aug;255(2 Pt 2):H366–H374. doi: 10.1152/ajpheart.1988.255.2.H366. [DOI] [PubMed] [Google Scholar]
- Grimm A. F., Lin H. L., Grimm B. R. Left ventricular free wall and intraventricular pressure-sarcomere length distributions. Am J Physiol. 1980 Jul;239(1):H101–H107. doi: 10.1152/ajpheart.1980.239.1.H101. [DOI] [PubMed] [Google Scholar]
- Hata K., Goto Y., Suga H. External mechanical work during relaxation period does not affect myocardial oxygen consumption. Am J Physiol. 1991 Dec;261(6 Pt 2):H1778–H1784. doi: 10.1152/ajpheart.1991.261.6.H1778. [DOI] [PubMed] [Google Scholar]
- Hisano R., Cooper G., 4th Correlation of force-length area with oxygen consumption in ferret papillary muscle. Circ Res. 1987 Sep;61(3):318–328. doi: 10.1161/01.res.61.3.318. [DOI] [PubMed] [Google Scholar]
- Hoeks A. P., Schmitz G. M., Allessie M. A., Jas H., Hollen S. J., Reneman R. S. Multichannel storage and display system to record the electrical activity of the heart. Med Biol Eng Comput. 1988 Jul;26(4):434–438. doi: 10.1007/BF02442306. [DOI] [PubMed] [Google Scholar]
- Huisman R. M., Elzinga G., Westerhof N., Sipkema P. Measurement of left ventricular wall stress. Cardiovasc Res. 1980 Mar;14(3):142–153. doi: 10.1093/cvr/14.3.142. [DOI] [PubMed] [Google Scholar]
- Khalafbeigui F., Suga H., Sagawa K. Left ventricular systolic pressure-volume area correlates with oxygen consumption. Am J Physiol. 1979 Nov;237(5):H566–H569. doi: 10.1152/ajpheart.1979.237.5.H566. [DOI] [PubMed] [Google Scholar]
- LISTER J. W., KLOTZ D. H., JOMAIN S. L., STUCKEY J. H., HOFFMAN B. F. EFFECT OF PACEMAKER SITE ON CARDIAC OUTPUT AND VENTRICULAR ACTIVATION IN DOGS WITH COMPLETE HEART BLOCK. Am J Cardiol. 1964 Oct;14:494–503. doi: 10.1016/0002-9149(64)90033-5. [DOI] [PubMed] [Google Scholar]
- LeWinter M. M., Kent R. S., Kroener J. M., Carew T. E., Covell J. W. Regional differences in myocardial performance in the left ventricle of the dog. Circ Res. 1975 Aug;37(2):191–199. doi: 10.1161/01.res.37.2.191. [DOI] [PubMed] [Google Scholar]
- Lew W. Y. Influence of ischemic zone size on nonischemic area function in the canine left ventricle. Am J Physiol. 1987 May;252(5 Pt 2):H990–H997. doi: 10.1152/ajpheart.1987.252.5.H990. [DOI] [PubMed] [Google Scholar]
- Muijtjens A. M., Roos J. M., Prinzen T. T., Hasman A., Reneman R. S., Arts T. Noise reduction in estimating cardiac deformation from marker tracks. Am J Physiol. 1990 Feb;258(2 Pt 2):H599–H605. doi: 10.1152/ajpheart.1990.258.2.H599. [DOI] [PubMed] [Google Scholar]
- Panerai R. B. A model of cardiac muscle mechanics and energetics. J Biomech. 1980;13(11):929–940. doi: 10.1016/0021-9290(80)90163-3. [DOI] [PubMed] [Google Scholar]
- Pollack G. H., Krueger J. W. Sarcomere dynamics in intact cardiac muscle. Eur J Cardiol. 1976 May;4 (Suppl):53–65. [PubMed] [Google Scholar]
- Prinzen F. W., Arts T., van der Vusse G. J., Coumans W. A., Reneman R. S. Gradients in fiber shortening and metabolism across ischemic left ventricular wall. Am J Physiol. 1986 Feb;250(2 Pt 2):H255–H264. doi: 10.1152/ajpheart.1986.250.2.H255. [DOI] [PubMed] [Google Scholar]
- Prinzen F. W., Augustijn C. H., Arts T., Allessie M. A., Reneman R. S. Redistribution of myocardial fiber strain and blood flow by asynchronous activation. Am J Physiol. 1990 Aug;259(2 Pt 2):H300–H308. doi: 10.1152/ajpheart.1990.259.2.H300. [DOI] [PubMed] [Google Scholar]
- Prinzen T. T., Arts T., Prinzen F. W., Reneman R. S. Mapping of epicardial deformation using a video processing technique. J Biomech. 1986;19(4):263–273. doi: 10.1016/0021-9290(86)90001-1. [DOI] [PubMed] [Google Scholar]
- Regen D. M., Anversa P., Capasso J. M. Segmental calculation of left ventricular wall stresses. Am J Physiol. 1993 May;264(5 Pt 2):H1411–H1421. doi: 10.1152/ajpheart.1993.264.5.H1411. [DOI] [PubMed] [Google Scholar]
- Spotnitz H. M., Sonnenblick E. H., Spiro D. Relation of ultrastructure to function in the intact heart: sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circ Res. 1966 Jan;18(1):49–66. doi: 10.1161/01.res.18.1.49. [DOI] [PubMed] [Google Scholar]
- Suga H., Hayashi T., Shirahata M., Suehiro S., Hisano R. Regression of cardiac oxygen consumption on ventricular pressure-volume area in dog. Am J Physiol. 1981 Mar;240(3):H320–H325. doi: 10.1152/ajpheart.1981.240.3.H320. [DOI] [PubMed] [Google Scholar]
- Suga H., Hayashi T., Shirahata M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol. 1981 Jan;240(1):H39–H44. doi: 10.1152/ajpheart.1981.240.1.H39. [DOI] [PubMed] [Google Scholar]
- Suga H., Hisano R., Hirata S., Hayashi T., Yamada O., Ninomiya I. Heart rate-independent energetics and systolic pressure-volume area in dog heart. Am J Physiol. 1983 Feb;244(2):H206–H214. doi: 10.1152/ajpheart.1983.244.2.H206. [DOI] [PubMed] [Google Scholar]
- Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol. 1979 Mar;236(3):H498–H505. doi: 10.1152/ajpheart.1979.236.3.H498. [DOI] [PubMed] [Google Scholar]
- Theroux P., Franklin D., Ross J., Jr, Kemper W. S. Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ Res. 1974 Dec;35(6):896–908. doi: 10.1161/01.res.35.6.896. [DOI] [PubMed] [Google Scholar]
- Tyberg J. V., Forrester J. S., Wyatt H. L., Goldner S. J., Parmley W. W., Swan H. J. An analysis of segmental ischemic dysfunction utilizing the pressure-length loop. Circulation. 1974 Apr;49(4):748–754. doi: 10.1161/01.cir.49.4.748. [DOI] [PubMed] [Google Scholar]
- Weber K. T., Janicki J. S. The metabolic demand and oxygen supply of the heart: physiologic and clinical considerations. Am J Cardiol. 1979 Oct;44(4):722–729. doi: 10.1016/0002-9149(79)90294-7. [DOI] [PubMed] [Google Scholar]
- Weiss H. R., Neubauer J. A., Lipp J. A., Sinha A. K. Quantitative determination of regional oxygen consumption in the dog heart. Circ Res. 1978 Mar;42(3):394–401. doi: 10.1161/01.res.42.3.394. [DOI] [PubMed] [Google Scholar]
- ter Keurs H. E., Rijnsburger W. H., van Heuningen R., Nagelsmit M. J. Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res. 1980 May;46(5):703–714. doi: 10.1161/01.res.46.5.703. [DOI] [PubMed] [Google Scholar]
- van Heuningen R., Rijnsburger W. H., ter Keurs H. E. Sarcomere length control in striated muscle. Am J Physiol. 1982 Mar;242(3):H411–H420. doi: 10.1152/ajpheart.1982.242.3.H411. [DOI] [PubMed] [Google Scholar]