Abstract
1. Mitochondria-rich (MR) cells in free suspension were obtained by collagenase and trypsin treatments of toad skin epithelium and studied by whole-cell voltage clamp and membrane current fluctuation analysis. 2. Cells studied with a 100 microM amiloride and 5 mM Ba2+ Ringer solution on the outside and 10 mM Cs+ in the pipette generated large membrane currents with reversal potentials varying in a Nernstian way with pipette [Cl-]. 3. The membrane chloride currents were activated in excess of Goldman-Hodgkin-Katz rectification by cell depolarization and clamping to positive cell potentials (VC). The resulting Cl- permeability was presented as an S-shaped function of membrane potential with half-maximal activation in the range 0 mV < VC < 50 mV. 4. The power density spectrum of Cl- current fluctuations could be fitted with a single Lorentzian component with a corner frequency, fc, of 34.9 +/- 2.6 Hz, and a low frequency asymptote, S(o), or 14.6 +/- 1.3 pA2 s per cell (mean +/- S.E.M.; VC = 25 mV, ECl = 0 mV, n = 6). 5. The lower-limit single channel conductance, gamma Cl(1 - Po), was 128 +/- 9 pS (VC = 25 mV, n = 6), where Po is the open channel probability. With Po = 0.5, this result indicates that Cl- channels of large unitary conductance (200-300 pS) are present in the mitochondria-rich cell membrane.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barry P. H., Lynch J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol. 1991 Apr;121(2):101–117. doi: 10.1007/BF01870526. [DOI] [PubMed] [Google Scholar]
- De Wolf I., Van Driessche W., Nagel W. Forskolin activates gated Cl- channels in frog skin. Am J Physiol. 1989 Jun;256(6 Pt 1):C1239–C1249. doi: 10.1152/ajpcell.1989.256.6.C1239. [DOI] [PubMed] [Google Scholar]
- Devuyst O., Beaujean V., Crabbé J. Effects of environmental conditions on mitochondrial-rich cell density and chloride transport in toad skin. Pflugers Arch. 1991 Feb;417(6):577–581. doi: 10.1007/BF00372954. [DOI] [PubMed] [Google Scholar]
- Dörge A., Nagel W., Beck F. X., Rick R., Thurau K. Role of mitochondria-rich cells in transepithelial sodium and chloride transport in amphibian skins. J Basic Clin Physiol Pharmacol. 1990 Jan-Dec;1(1-4):339–348. doi: 10.1515/jbcpp.1990.1.1-4.339. [DOI] [PubMed] [Google Scholar]
- Ehrenfeld J., Lacoste I., Harvey B. J. The key role of the mitochondria-rich cell in Na+ and H+ transport across the frog skin epithelium. Pflugers Arch. 1989 May;414(1):59–67. doi: 10.1007/BF00585627. [DOI] [PubMed] [Google Scholar]
- Foskett J. K., Ussing H. H. Localization of chloride conductance to mitochondria-rich cells in frog skin epithelium. J Membr Biol. 1986;91(3):251–258. doi: 10.1007/BF01868818. [DOI] [PubMed] [Google Scholar]
- Harvey B. J. Energization of sodium absorption by the H(+)-ATPase pump in mitochondria-rich cells of frog skin. J Exp Biol. 1992 Nov;172:289–309. doi: 10.1242/jeb.172.1.289. [DOI] [PubMed] [Google Scholar]
- Ilic V., Brown D. Modification of mitochondria-rich cells in different ionic conditions: changes in cell morphology and cell number in the skin of Xenopus laevis. Anat Rec. 1980 Feb;196(2):153–161. doi: 10.1002/ar.1091960205. [DOI] [PubMed] [Google Scholar]
- Katz U., Larsen E. H. Chloride transport in toad skin (Bufo viridis). The effect of salt adaptation. J Exp Biol. 1984 Mar;109:353–371. doi: 10.1242/jeb.109.1.353. [DOI] [PubMed] [Google Scholar]
- Larsen E. H. Chloride transport by high-resistance heterocellular epithelia. Physiol Rev. 1991 Jan;71(1):235–283. doi: 10.1152/physrev.1991.71.1.235. [DOI] [PubMed] [Google Scholar]
- Larsen E. H., Ussing H. H., Spring K. R. Ion transport by mitochondria-rich cells in toad skin. J Membr Biol. 1987;99(1):25–40. doi: 10.1007/BF01870619. [DOI] [PubMed] [Google Scholar]
- Larsen E. H., Willumsen N. J., Christoffersen B. C. Role of proton pump of mitochondria-rich cells for active transport of chloride ions in toad skin epithelium. J Physiol. 1992 May;450:203–216. doi: 10.1113/jphysiol.1992.sp019124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Light D. B., Schwiebert E. M., Fejes-Toth G., Naray-Fejes-Toth A., Karlson K. H., McCann F. V., Stanton B. A. Chloride channels in the apical membrane of cortical collecting duct cells. Am J Physiol. 1990 Feb;258(2 Pt 2):F273–F280. doi: 10.1152/ajprenal.1990.258.2.F273. [DOI] [PubMed] [Google Scholar]
- Nagel W., Dörge A. Analysis of anion conductance in frog skin. Pflugers Arch. 1990 Apr;416(1-2):53–61. doi: 10.1007/BF00370221. [DOI] [PubMed] [Google Scholar]
- Nagel W., Van Driessche W. Chloride-related current fluctuation in amphibian skin. Pflugers Arch. 1991 Jul;418(6):544–550. doi: 10.1007/BF00370569. [DOI] [PubMed] [Google Scholar]
- Neher E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992;207:123–131. doi: 10.1016/0076-6879(92)07008-c. [DOI] [PubMed] [Google Scholar]
- Neher E., Stevens C. F. Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng. 1977;6:345–381. doi: 10.1146/annurev.bb.06.060177.002021. [DOI] [PubMed] [Google Scholar]
- Nelson D. J., Tang J. M., Palmer L. G. Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells. J Membr Biol. 1984;80(1):81–89. doi: 10.1007/BF01868692. [DOI] [PubMed] [Google Scholar]
- Page R. D., Frazier L. W. Morphological changes in the skin of Rana pipiens in response to metabolic acidosis. Proc Soc Exp Biol Med. 1987 Apr;184(4):416–422. doi: 10.3181/00379727-184-42495. [DOI] [PubMed] [Google Scholar]
- Rick R. Intracellular ion concentrations in the isolated frog skin epithelium: evidence for different types of mitochondria-rich cells. J Membr Biol. 1992 May;127(3):227–236. doi: 10.1007/BF00231510. [DOI] [PubMed] [Google Scholar]
- Steinmetz P. R. Cellular organization of urinary acidification. Am J Physiol. 1986 Aug;251(2 Pt 2):F173–F187. doi: 10.1152/ajprenal.1986.251.2.F173. [DOI] [PubMed] [Google Scholar]
- Van Driessche W., Zeiske W. Ionic channels in epithelial cell membranes. Physiol Rev. 1985 Oct;65(4):833–903. doi: 10.1152/physrev.1985.65.4.833. [DOI] [PubMed] [Google Scholar]
- Willumsen N. J., Larsen E. H. Membrane potentials and intracellular Cl- activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl- conductance. J Membr Biol. 1986;94(2):173–190. doi: 10.1007/BF01871197. [DOI] [PubMed] [Google Scholar]

