Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Jul 1;478(Pt 1):7–15. doi: 10.1113/jphysiol.1994.sp020226

Chloride currents of single mitochondria-rich cells of toad skin epithelium.

E H Larsen 1, B J Harvey 1
PMCID: PMC1155641  PMID: 7965837

Abstract

1. Mitochondria-rich (MR) cells in free suspension were obtained by collagenase and trypsin treatments of toad skin epithelium and studied by whole-cell voltage clamp and membrane current fluctuation analysis. 2. Cells studied with a 100 microM amiloride and 5 mM Ba2+ Ringer solution on the outside and 10 mM Cs+ in the pipette generated large membrane currents with reversal potentials varying in a Nernstian way with pipette [Cl-]. 3. The membrane chloride currents were activated in excess of Goldman-Hodgkin-Katz rectification by cell depolarization and clamping to positive cell potentials (VC). The resulting Cl- permeability was presented as an S-shaped function of membrane potential with half-maximal activation in the range 0 mV < VC < 50 mV. 4. The power density spectrum of Cl- current fluctuations could be fitted with a single Lorentzian component with a corner frequency, fc, of 34.9 +/- 2.6 Hz, and a low frequency asymptote, S(o), or 14.6 +/- 1.3 pA2 s per cell (mean +/- S.E.M.; VC = 25 mV, ECl = 0 mV, n = 6). 5. The lower-limit single channel conductance, gamma Cl(1 - Po), was 128 +/- 9 pS (VC = 25 mV, n = 6), where Po is the open channel probability. With Po = 0.5, this result indicates that Cl- channels of large unitary conductance (200-300 pS) are present in the mitochondria-rich cell membrane.

Full text

PDF
7

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry P. H., Lynch J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol. 1991 Apr;121(2):101–117. doi: 10.1007/BF01870526. [DOI] [PubMed] [Google Scholar]
  2. De Wolf I., Van Driessche W., Nagel W. Forskolin activates gated Cl- channels in frog skin. Am J Physiol. 1989 Jun;256(6 Pt 1):C1239–C1249. doi: 10.1152/ajpcell.1989.256.6.C1239. [DOI] [PubMed] [Google Scholar]
  3. Devuyst O., Beaujean V., Crabbé J. Effects of environmental conditions on mitochondrial-rich cell density and chloride transport in toad skin. Pflugers Arch. 1991 Feb;417(6):577–581. doi: 10.1007/BF00372954. [DOI] [PubMed] [Google Scholar]
  4. Dörge A., Nagel W., Beck F. X., Rick R., Thurau K. Role of mitochondria-rich cells in transepithelial sodium and chloride transport in amphibian skins. J Basic Clin Physiol Pharmacol. 1990 Jan-Dec;1(1-4):339–348. doi: 10.1515/jbcpp.1990.1.1-4.339. [DOI] [PubMed] [Google Scholar]
  5. Ehrenfeld J., Lacoste I., Harvey B. J. The key role of the mitochondria-rich cell in Na+ and H+ transport across the frog skin epithelium. Pflugers Arch. 1989 May;414(1):59–67. doi: 10.1007/BF00585627. [DOI] [PubMed] [Google Scholar]
  6. Foskett J. K., Ussing H. H. Localization of chloride conductance to mitochondria-rich cells in frog skin epithelium. J Membr Biol. 1986;91(3):251–258. doi: 10.1007/BF01868818. [DOI] [PubMed] [Google Scholar]
  7. Harvey B. J. Energization of sodium absorption by the H(+)-ATPase pump in mitochondria-rich cells of frog skin. J Exp Biol. 1992 Nov;172:289–309. doi: 10.1242/jeb.172.1.289. [DOI] [PubMed] [Google Scholar]
  8. Ilic V., Brown D. Modification of mitochondria-rich cells in different ionic conditions: changes in cell morphology and cell number in the skin of Xenopus laevis. Anat Rec. 1980 Feb;196(2):153–161. doi: 10.1002/ar.1091960205. [DOI] [PubMed] [Google Scholar]
  9. Katz U., Larsen E. H. Chloride transport in toad skin (Bufo viridis). The effect of salt adaptation. J Exp Biol. 1984 Mar;109:353–371. doi: 10.1242/jeb.109.1.353. [DOI] [PubMed] [Google Scholar]
  10. Larsen E. H. Chloride transport by high-resistance heterocellular epithelia. Physiol Rev. 1991 Jan;71(1):235–283. doi: 10.1152/physrev.1991.71.1.235. [DOI] [PubMed] [Google Scholar]
  11. Larsen E. H., Ussing H. H., Spring K. R. Ion transport by mitochondria-rich cells in toad skin. J Membr Biol. 1987;99(1):25–40. doi: 10.1007/BF01870619. [DOI] [PubMed] [Google Scholar]
  12. Larsen E. H., Willumsen N. J., Christoffersen B. C. Role of proton pump of mitochondria-rich cells for active transport of chloride ions in toad skin epithelium. J Physiol. 1992 May;450:203–216. doi: 10.1113/jphysiol.1992.sp019124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Light D. B., Schwiebert E. M., Fejes-Toth G., Naray-Fejes-Toth A., Karlson K. H., McCann F. V., Stanton B. A. Chloride channels in the apical membrane of cortical collecting duct cells. Am J Physiol. 1990 Feb;258(2 Pt 2):F273–F280. doi: 10.1152/ajprenal.1990.258.2.F273. [DOI] [PubMed] [Google Scholar]
  14. Nagel W., Dörge A. Analysis of anion conductance in frog skin. Pflugers Arch. 1990 Apr;416(1-2):53–61. doi: 10.1007/BF00370221. [DOI] [PubMed] [Google Scholar]
  15. Nagel W., Van Driessche W. Chloride-related current fluctuation in amphibian skin. Pflugers Arch. 1991 Jul;418(6):544–550. doi: 10.1007/BF00370569. [DOI] [PubMed] [Google Scholar]
  16. Neher E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992;207:123–131. doi: 10.1016/0076-6879(92)07008-c. [DOI] [PubMed] [Google Scholar]
  17. Neher E., Stevens C. F. Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng. 1977;6:345–381. doi: 10.1146/annurev.bb.06.060177.002021. [DOI] [PubMed] [Google Scholar]
  18. Nelson D. J., Tang J. M., Palmer L. G. Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells. J Membr Biol. 1984;80(1):81–89. doi: 10.1007/BF01868692. [DOI] [PubMed] [Google Scholar]
  19. Page R. D., Frazier L. W. Morphological changes in the skin of Rana pipiens in response to metabolic acidosis. Proc Soc Exp Biol Med. 1987 Apr;184(4):416–422. doi: 10.3181/00379727-184-42495. [DOI] [PubMed] [Google Scholar]
  20. Rick R. Intracellular ion concentrations in the isolated frog skin epithelium: evidence for different types of mitochondria-rich cells. J Membr Biol. 1992 May;127(3):227–236. doi: 10.1007/BF00231510. [DOI] [PubMed] [Google Scholar]
  21. Steinmetz P. R. Cellular organization of urinary acidification. Am J Physiol. 1986 Aug;251(2 Pt 2):F173–F187. doi: 10.1152/ajprenal.1986.251.2.F173. [DOI] [PubMed] [Google Scholar]
  22. Van Driessche W., Zeiske W. Ionic channels in epithelial cell membranes. Physiol Rev. 1985 Oct;65(4):833–903. doi: 10.1152/physrev.1985.65.4.833. [DOI] [PubMed] [Google Scholar]
  23. Willumsen N. J., Larsen E. H. Membrane potentials and intracellular Cl- activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl- conductance. J Membr Biol. 1986;94(2):173–190. doi: 10.1007/BF01871197. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES