Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Sep 15;479(Pt 3):371–380. doi: 10.1113/jphysiol.1994.sp020302

Counter-transport of potassium by the glutamate uptake carrier in glial cells isolated from the tiger salamander retina.

A Amato 1, B Barbour 1, M Szatkowski 1, D Attwell 1
PMCID: PMC1155756  PMID: 7837095

Abstract

1. To investigate the transport of potassium on the glutamate uptake carrier, the glutamate uptake current in isolated retinal Müller cells was monitored by whole-cell clamping, while measuring changes of potassium concentration outside the cells ([K+]o) with an ion-sensitive microelectrode. 2. Activating glutamate uptake led to an accumulation of potassium outside the cells, consistent with the hypothesis, based on less direct evidence, that the glutamate uptake carrier transports potassium out of the cell. 3. The glutamate-evoked rise of [K+]o showed the pharmacology and sodium dependence of glutamate uptake. 4. The rise in [K+]o was proportional to the uptake current flowing between 0 and -80 mV, implying that the ratio of K+ transported to charge transported by the uptake carrier is constant over this voltage range. The K+ to charge transport ratio was the same for uptake of D-aspartate and L-glutamate. 5. By clamping cells with pipettes containing solutions of different [K+], the dependence of the glutamate and aspartate uptake currents on intracellular [K+] was determined. L- and D-aspartate transport showed a smaller maximum uptake current (Imax), and a smaller apparent Michaelis constant (Km) for activation by intracellular K+, than did L-glutamate transport. The ratio of Imax to Km was the same for these three analogues, a result which can be predicted from simple models of the carrier's operation. 6. Fully activating glutamate uptake in Müller cells in the intact retina would produce a K+ load into the extracellular space of about 0.6 mM s-1. Suppression of glutamate release from photoreceptors by light will reduce K+ efflux from Müller cells in the outer retina; this may contribute to the light-evoked fall of [K+]o observed in the outer retina, and thus contribute to shaping the electroretinogram.

Full text

PDF
371

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbour B., Brew H., Attwell D. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature. 1988 Sep 29;335(6189):433–435. doi: 10.1038/335433a0. [DOI] [PubMed] [Google Scholar]
  2. Barbour B., Brew H., Attwell D. Electrogenic uptake of glutamate and aspartate into glial cells isolated from the salamander (Ambystoma) retina. J Physiol. 1991 May;436:169–193. doi: 10.1113/jphysiol.1991.sp018545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barbour B., Brew H., Attwell D. Electrogenic uptake of glutamate and aspartate into glial cells isolated from the salamander (Ambystoma) retina. J Physiol. 1991 May;436:169–193. doi: 10.1113/jphysiol.1991.sp018545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bouvier M., Szatkowski M., Amato A., Attwell D. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature. 1992 Dec 3;360(6403):471–474. doi: 10.1038/360471a0. [DOI] [PubMed] [Google Scholar]
  5. Brew H., Attwell D. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. 1987 Jun 25-Jul 1Nature. 327(6124):707–709. doi: 10.1038/327707a0. [DOI] [PubMed] [Google Scholar]
  6. Hertz L. Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog Neurobiol. 1979;13(3):277–323. doi: 10.1016/0301-0082(79)90018-2. [DOI] [PubMed] [Google Scholar]
  7. Kanner B. I., Bendahan A. Binding order of substrates to the sodium and potassium ion coupled L-glutamic acid transporter from rat brain. Biochemistry. 1982 Nov 23;21(24):6327–6330. doi: 10.1021/bi00267a044. [DOI] [PubMed] [Google Scholar]
  8. Kanner B. I., Sharon I. Active transport of L-glutamate by membrane vesicles isolated from rat brain. Biochemistry. 1978 Sep 19;17(19):3949–3953. doi: 10.1021/bi00612a011. [DOI] [PubMed] [Google Scholar]
  9. Mobbs P., Brew H., Attwell D. A quantitative analysis of glial cell coupling in the retina of the axolotl (Ambystoma mexicanum). Brain Res. 1988 Sep 20;460(2):235–245. doi: 10.1016/0006-8993(88)90368-x. [DOI] [PubMed] [Google Scholar]
  10. Newman E. A., Odette L. L. Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J Neurophysiol. 1984 Jan;51(1):164–182. doi: 10.1152/jn.1984.51.1.164. [DOI] [PubMed] [Google Scholar]
  11. Newman E. A. Regional specialization of retinal glial cell membrane. Nature. 1984 May 10;309(5964):155–157. doi: 10.1038/309155a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Newman E. A. Voltage-dependent calcium and potassium channels in retinal glial cells. 1985 Oct 31-Nov 6Nature. 317(6040):809–811. doi: 10.1038/317809a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nicholls D., Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990 Nov;11(11):462–468. doi: 10.1016/0165-6147(90)90129-v. [DOI] [PubMed] [Google Scholar]
  14. Oakley B., 2nd, Flaming D. G., Brown K. T. Effects of the rod receptor potential upon retinal extracellular potassium concentration. J Gen Physiol. 1979 Dec;74(6):713–737. doi: 10.1085/jgp.74.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
  16. Sarantis M., Attwell D. Glutamate uptake in mammalian retinal glia is voltage- and potassium-dependent. Brain Res. 1990 May 21;516(2):322–325. doi: 10.1016/0006-8993(90)90935-5. [DOI] [PubMed] [Google Scholar]
  17. Schwartz E. A. L-glutamate conditionally modulates the K+ current of Müller glial cells. Neuron. 1993 Jun;10(6):1141–1149. doi: 10.1016/0896-6273(93)90062-v. [DOI] [PubMed] [Google Scholar]
  18. Schwartz E. A., Tachibana M. Electrophysiology of glutamate and sodium co-transport in a glial cell of the salamander retina. J Physiol. 1990 Jul;426:43–80. doi: 10.1113/jphysiol.1990.sp018126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Standen N. B., Stanfield P. R. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. J Physiol. 1978 Jul;280:169–191. doi: 10.1113/jphysiol.1978.sp012379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Szatkowski M., Barbour B., Attwell D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature. 1990 Nov 29;348(6300):443–446. doi: 10.1038/348443a0. [DOI] [PubMed] [Google Scholar]
  21. Szatkowski M., Barbour B., Attwell D. The potassium-dependence of excitatory amino acid transport: resolution of a paradox. Brain Res. 1991 Aug 2;555(2):343–345. doi: 10.1016/0006-8993(91)90363-z. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES