Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Sep 15;479(Pt 3):381–387. doi: 10.1113/jphysiol.1994.sp020303

Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro.

I D Forsythe 1
PMCID: PMC1155757  PMID: 7837096

Abstract

1. An in vitro brainstem slice preparation of the superior olivary complex has been developed permitting patch recording from a presynaptic terminal (calyx of Held) and from its postsynaptic target--the principal neurone of the medial nucleus of the trapezoid body (MNTB). 2. The fluorescent stain DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) was used in fixed tissue and Lucifer Yellow in living slices, to identify calices enclosing single MNTB neuronal somata. 3. Whole-cell recording from the MNTB neurone shows evoked EPSCs preceded by a prespike, corresponding to the presynaptic action potential (AP). In some cases one patch pipette recorded from both pre- and postsynaptic elements, but confirmation of exclusively presynaptic recording was obtained using pipettes containing Lucifer Yellow in a further eleven cases. 4. Under current clamp, the pre- and postsynaptic sites could be distinguished by their response to step depolarizations; presynaptic terminals generated a train of APs at frequencies up to 200 Hz, while MNTB neurones gave a single AP. Each presynaptic AP had an after-hyperpolarization lasting less than 2 ms. 5. Under voltage clamp, step depolarizations of presynaptic terminals generated a tetrodotoxin-sensitive inward current followed by rapidly activating outward potassium currents at potentials more positive than -60 mV. The outward current exhibited little inactivation over the 150 ms steps and 4-aminopyridine (200 microM) blocked 63.0 +/- 14.5% (mean +/- S.D., n = 3) of the sustained current at 0 mV. Like the squid giant synapse, mammalian terminals express rapidly activating 'delayed rectifier'-type potassium currents.

Full text

PDF
381

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augustine G. J. Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. J Physiol. 1990 Dec;431:343–364. doi: 10.1113/jphysiol.1990.sp018333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. David G., Barrett J. N., Barrett E. F. Activation of internodal potassium conductance in rat myelinated axons. J Physiol. 1993 Dec;472:177–202. doi: 10.1113/jphysiol.1993.sp019942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Forsythe I. D., Barnes-Davies M. The binaural auditory pathway: excitatory amino acid receptors mediate dual timecourse excitatory postsynaptic currents in the rat medial nucleus of the trapezoid body. Proc Biol Sci. 1993 Feb 22;251(1331):151–157. doi: 10.1098/rspb.1993.0022. [DOI] [PubMed] [Google Scholar]
  4. Forsythe I. D., Barnes-Davies M. The binaural auditory pathway: membrane currents limiting multiple action potential generation in the rat medial nucleus of the trapezoid body. Proc Biol Sci. 1993 Feb 22;251(1331):143–150. doi: 10.1098/rspb.1993.0021. [DOI] [PubMed] [Google Scholar]
  5. Jack J. J., Redman S. J., Wong K. Modifications to synaptic transmission at group Ia synapses on cat spinal motoneurones by 4-aminopyridine. J Physiol. 1981 Dec;321:111–126. doi: 10.1113/jphysiol.1981.sp013974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kandler K., Friauf E. Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. J Comp Neurol. 1993 Feb 8;328(2):161–184. doi: 10.1002/cne.903280202. [DOI] [PubMed] [Google Scholar]
  7. Kirsch G. E., Drewe J. A. Gating-dependent mechanism of 4-aminopyridine block in two related potassium channels. J Gen Physiol. 1993 Nov;102(5):797–816. doi: 10.1085/jgp.102.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Llinás R., Sugimori M., Simon S. M. Transmission by presynaptic spike-like depolarization in the squid giant synapse. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2415–2419. doi: 10.1073/pnas.79.7.2415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Manis P. B., Marx S. O. Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci. 1991 Sep;11(9):2865–2880. doi: 10.1523/JNEUROSCI.11-09-02865.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McNamara N. M., Muniz Z. M., Wilkin G. P., Dolly J. O. Prominent location of a K+ channel containing the alpha subunit Kv 1.2 in the basket cell nerve terminals of rat cerebellum. Neuroscience. 1993 Dec;57(4):1039–1045. doi: 10.1016/0306-4522(93)90047-j. [DOI] [PubMed] [Google Scholar]
  11. Perney T. M., Marshall J., Martin K. A., Hockfield S., Kaczmarek L. K. Expression of the mRNAs for the Kv3.1 potassium channel gene in the adult and developing rat brain. J Neurophysiol. 1992 Sep;68(3):756–766. doi: 10.1152/jn.1992.68.3.756. [DOI] [PubMed] [Google Scholar]
  12. Raman I. M., Trussell L. O. The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron. 1992 Jul;9(1):173–186. doi: 10.1016/0896-6273(92)90232-3. [DOI] [PubMed] [Google Scholar]
  13. Sheng M., Tsaur M. L., Jan Y. N., Jan L. Y. Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain. J Neurosci. 1994 Apr;14(4):2408–2417. doi: 10.1523/JNEUROSCI.14-04-02408.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stanley E. F. Single calcium channels on a cholinergic presynaptic nerve terminal. Neuron. 1991 Oct;7(4):585–591. doi: 10.1016/0896-6273(91)90371-6. [DOI] [PubMed] [Google Scholar]
  15. Thorn P. J., Wang X. M., Lemos J. R. A fast, transient K+ current in neurohypophysial nerve terminals of the rat. J Physiol. 1991 Jan;432:313–326. doi: 10.1113/jphysiol.1991.sp018386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yawo H., Momiyama A. Re-evaluation of calcium currents in pre- and postsynaptic neurones of the chick ciliary ganglion. J Physiol. 1993 Jan;460:153–172. doi: 10.1113/jphysiol.1993.sp019464. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES