Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Oct 1;480(Pt 1):99–107. doi: 10.1113/jphysiol.1994.sp020344

Phenylalanine transport in rabbit small intestine.

B G Munck 1, L K Munck 1
PMCID: PMC1155781  PMID: 7853231

Abstract

1. The proposal that rabbit small intestine possesses a separate, sodium-dependent carrier of phenylalanine has been examined by measurements of the unidirectional influx of amino acids across the brush-border membrane of the intact epithelium of the rabbit small intestine. 2. We demonstrate that, like alanine, glycine and leucine, phenylalanine shares sodium-dependent as well as sodium-independent transport with lysine. 3. Using the distal ileum we applied the A (phenylalanine)-B (leucine)-C (alanine) test on the sodium-dependent, lysine-resistant transport of phenylalanine. For phenylalanine, K1/2 (concentration required for half-maximal transport) was 3.1 +/- 0.2 mM (n = 7) and Ki (inhibitor constant) against leucine transport was 3.1 +/- 0.2 mM (n = 4). For leucine, K1/2 was 1.1 +/- 0.1 mM (n = 4) and Ki against transport of phenylalanine was 1.1 +/- 0.1 mM (n = 4). For alanine, K1/2 was 12.6 +/- 1.1 mM (n = 3), Ki against phenylalanine was 13.1 +/- 1.8 mM (n = 4) and Ki against leucine was 11.0 +/- 0.4 mM (n = 4). 4. Using the jejunum we applied the A (phenylalanine)-B (alanine)-C (methionine) test on the lysine-resistant, sodium-dependent transport of phenylalanine. For phenylalanine, K1/2 was 4.7 +/- 0.2 mM (n = 7) and Ki against alanine was 4.8 +/- 0.2 mM (n = 4). For alanine, K1/2 was 15.6 +/- 0.8 mM (n = 7) and Ki against phenylalanine was 18.1 +/- 0.9 mM (n = 5).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
99

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker G. A., Ellory J. C. The identification of neutral amino acid transport systems. Exp Physiol. 1990 Jan;75(1):3–26. doi: 10.1113/expphysiol.1990.sp003382. [DOI] [PubMed] [Google Scholar]
  2. Del Castillo J. R., Muñiz R. Neutral amino acid transport by isolated small intestinal cells from guinea pigs. Am J Physiol. 1991 Dec;261(6 Pt 1):G1030–G1036. doi: 10.1152/ajpgi.1991.261.6.G1030. [DOI] [PubMed] [Google Scholar]
  3. Hajjar J. J., Curran P. F. Characteristics of the amino acid transport system in the mucosal border of rabbit ileum. J Gen Physiol. 1970 Dec;56(6):673–691. doi: 10.1085/jgp.56.6.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Karasov W., Solberg D., Carter S., Hughes M., Phan D., Zollman F., Diamond J. Uptake pathways for amino acids in mouse intestine. Am J Physiol. 1986 Oct;251(4 Pt 1):G501–G508. doi: 10.1152/ajpgi.1986.251.4.G501. [DOI] [PubMed] [Google Scholar]
  5. Maenz D. D., Patience J. F. L-threonine transport in pig jejunal brush border membrane vesicles. Functional characterization of the unique system B in the intestinal epithelium. J Biol Chem. 1992 Nov 5;267(31):22079–22086. [PubMed] [Google Scholar]
  6. Malo C. Multiple pathways for amino acid transport in brush border membrane vesicles isolated from the human fetal small intestine. Gastroenterology. 1991 Jun;100(6):1644–1652. doi: 10.1016/0016-5085(91)90664-7. [DOI] [PubMed] [Google Scholar]
  7. Munck B. G. Lysine transport in the guinea-pig small intestine. Biochim Biophys Acta. 1984 Feb 29;770(1):29–34. doi: 10.1016/0005-2736(84)90069-5. [DOI] [PubMed] [Google Scholar]
  8. Munck B. G. Transport of imino acids and non-alpha-amino acids across the brush-border membrane of the rabbit ileum. J Membr Biol. 1985;83(1-2):15–24. doi: 10.1007/BF01868734. [DOI] [PubMed] [Google Scholar]
  9. Munck B. G. Transport of neutral and cationic amino acids across the brush-border membrane of the rabbit ileum. J Membr Biol. 1985;83(1-2):1–13. doi: 10.1007/BF01868733. [DOI] [PubMed] [Google Scholar]
  10. Munck L. K., Munck B. G. Chloride-dependence of amino acid transport in rabbit ileum. Biochim Biophys Acta. 1990 Aug 10;1027(1):17–20. doi: 10.1016/0005-2736(90)90041-l. [DOI] [PubMed] [Google Scholar]
  11. Munck L. K., Munck B. G. Distinction between chloride-dependent transport systems for taurine and beta-alanine in rabbit ileum. Am J Physiol. 1992 Apr;262(4 Pt 1):G609–G615. doi: 10.1152/ajpgi.1992.262.4.G609. [DOI] [PubMed] [Google Scholar]
  12. Munck L. K., Munck B. G. Variation in amino acid transport along the rabbit small intestine. Mutual jejunal carriers of leucine and lysine. Biochim Biophys Acta. 1992 Apr 22;1116(2):83–90. doi: 10.1016/0304-4165(92)90103-2. [DOI] [PubMed] [Google Scholar]
  13. Preston R. L., Schaeffer J. F., Curran P. F. Structure-affinity relationships of substrates for the neutral amino acid transport system in rabbit ileum. J Gen Physiol. 1974 Oct;64(4):443–467. doi: 10.1085/jgp.64.4.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SCRIVER C. R., WILSON O. H. POSSIBLE LOCATIONS FOR A COMMON GENE PRODUCT IN MEMBRANE TRANSPORT OF IMINO-ACIDS AND GLYCINE. Nature. 1964 Apr 4;202:92–93. doi: 10.1038/202092a0. [DOI] [PubMed] [Google Scholar]
  15. Schultz S. G., Curran P. F., Chez R. A., Fuisz R. E. Alanine and sodium fluxes across mucosal border of rabbit ileum. J Gen Physiol. 1967 May;50(5):1241–1260. doi: 10.1085/jgp.50.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stevens B. R., Ross H. J., Wright E. M. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J Membr Biol. 1982;66(3):213–225. doi: 10.1007/BF01868496. [DOI] [PubMed] [Google Scholar]
  17. Van Winkle L. J. Amino acid transport in developing animal oocytes and early conceptuses. Biochim Biophys Acta. 1988 Feb 24;947(1):173–208. doi: 10.1016/0304-4157(88)90024-x. [DOI] [PubMed] [Google Scholar]
  18. Van Winkle L. J., Campione A. L., Gorman J. M. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J Biol Chem. 1988 Mar 5;263(7):3150–3163. [PubMed] [Google Scholar]
  19. Van Winkle L. J., Christensen H. N., Campione A. L. Na+-dependent transport of basic, zwitterionic, and bicyclic amino acids by a broad-scope system in mouse blastocysts. J Biol Chem. 1985 Oct 5;260(22):12118–12123. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES