Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Oct 1;480(Pt 1):109–121. doi: 10.1113/jphysiol.1994.sp020345

5-Hydoxytryptamine evokes depolarizations and membrane potential oscillations in rat sympathetic preganglionic neurones.

A E Pickering 1, D Spanswick 1, S D Logan 1
PMCID: PMC1155782  PMID: 7853215

Abstract

1. Whole-cell recordings were made from seventy-seven identified rat sympathetic preganglionic neurones (SPN) in spinal cord slices. Perfusion of 5-HT (0.5-30 microM) strongly depolarized 90% of neurones. The response was slow in onset, could last over 10 min and was associated with an increase in input resistance. 5-HT could also evoke rhythmical membrane potential oscillations in a population of previously quiescent neurones. 2. The 5-HT response persisted in TTX and also in low-Ca(2+)-high-Mg2+ artificial cerebrospinal fluid (ACSF), suggesting that the receptors are on SPN. The 5-HT uptake inhibitor 6-nitroquipazine potentiated the 5-HT-induced depolarization. 3. The 5-HT-induced depolarization was reduced and then abolished by membrane hyperpolarization to potentials of about -100 mV, but was not reversed in sign by further hyperpolarization. In voltage clamp, 5-HT evoked inward currents associated with the reduction of an outwardly rectifying potassium conductance. 4. The 5-HT2 receptor agonist alpha-methyl-5-HT mimicked the 5-HT response on all neurones, as did the 5-HT1 receptor agonist 5-carboxamidotryptamine (5-CT) on 71% of SPN. The responses to 5-HT, alpha-methyl-5-HT and 5-CT were inhibited by the 5-HT2 antagonists ketanserin and ritanserin. 5. Pressure ejection of 5-HT over the central canal region could evoke a biphasic inhibitory-excitatory response. This response persisted in TTX, suggesting that an inhibitory 5-HT receptor may be located on the medial dendrites. 6. SPN are powerfully depolarized by 5-HT acting at 5-HT2 receptors, via the closure of an outwardly rectifying potassium conductance. The long duration of the response and the ability of 5-HT to induce rhythmical oscillations suggest that 5-HT may have an important role in regulating SPN excitability.

Full text

PDF
109

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacon S. J., Smith A. D. Preganglionic sympathetic neurones innervating the rat adrenal medulla: immunocytochemical evidence of synaptic input from nerve terminals containing substance P, GABA or 5-hydroxytryptamine. J Auton Nerv Syst. 1988 Sep;24(1-2):97–122. doi: 10.1016/0165-1838(88)90140-3. [DOI] [PubMed] [Google Scholar]
  2. Bacon S. J., Zagon A., Smith A. D. Electron microscopic evidence of a monosynaptic pathway between cells in the caudal raphé nuclei and sympathetic preganglionic neurons in the rat spinal cord. Exp Brain Res. 1990;79(3):589–602. doi: 10.1007/BF00229327. [DOI] [PubMed] [Google Scholar]
  3. Blanton M. G., Lo Turco J. J., Kriegstein A. R. Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods. 1989 Dec;30(3):203–210. doi: 10.1016/0165-0270(89)90131-3. [DOI] [PubMed] [Google Scholar]
  4. Bowker R. M., Westlund K. N., Sullivan M. C., Coulter J. D. Organization of descending serotonergic projections to the spinal cord. Prog Brain Res. 1982;57:239–265. doi: 10.1016/S0079-6123(08)64132-1. [DOI] [PubMed] [Google Scholar]
  5. Christie M. J., Williams J. T., North R. A. Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats. J Neurosci. 1989 Oct;9(10):3584–3589. doi: 10.1523/JNEUROSCI.09-10-03584.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clement M. E., McCall R. B. Studies on the site and mechanism of the sympathoexcitatory action of 5-HT2 agonists. Brain Res. 1990 May 7;515(1-2):299–302. doi: 10.1016/0006-8993(90)90610-n. [DOI] [PubMed] [Google Scholar]
  7. De Groat W. C., Ryall R. W. An excitatory action 0f 5-hydroxytryptamine on sympathetic preganglionic neurones. Exp Brain Res. 1967;3(4):299–305. doi: 10.1007/BF00237556. [DOI] [PubMed] [Google Scholar]
  8. Elliott P., Wallis D. I. Serotonin and L-norepinephrine as mediators of altered excitability in neonatal rat motoneurons studied in vitro. Neuroscience. 1992;47(3):533–544. doi: 10.1016/0306-4522(92)90163-v. [DOI] [PubMed] [Google Scholar]
  9. Grace A. A., Llinás R. Morphological artifacts induced in intracellularly stained neurons by dehydration: circumvention using rapid dimethyl sulfoxide clearing. Neuroscience. 1985 Oct;16(2):461–475. doi: 10.1016/0306-4522(85)90018-1. [DOI] [PubMed] [Google Scholar]
  10. Helke C. J., Thor K. B., Phillips E. T. 5-Hydroxytryptamine1C/2 agonists in the thoracic spinal cord: cardiovascular effects and binding sites in the intermediolateral cell column. J Pharmacol Exp Ther. 1991 Dec;259(3):1335–1343. [PubMed] [Google Scholar]
  11. Horikawa K., Armstrong W. E. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods. 1988 Aug;25(1):1–11. doi: 10.1016/0165-0270(88)90114-8. [DOI] [PubMed] [Google Scholar]
  12. Humphrey P. P., Hartig P., Hoyer D. A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci. 1993 Jun;14(6):233–236. doi: 10.1016/0165-6147(93)90016-d. [DOI] [PubMed] [Google Scholar]
  13. Inokuchi H., Yoshimura M., Polosa C., Nishi S. The effects of 5-hydroxytryptamine on cat sympathetic preganglionic neurons in vitro. Kurume Med J. 1990;37(4):309–312. doi: 10.2739/kurumemedj.37.309. [DOI] [PubMed] [Google Scholar]
  14. Kadzielawa K. Antagonism of the excitatory effects of 5-hydroxytryptamine on sympathetic preganglionic neurones and neurones activated by visceral afferents. Neuropharmacology. 1983 Jan;22(1):19–27. doi: 10.1016/0028-3908(83)90256-3. [DOI] [PubMed] [Google Scholar]
  15. Lamb T. D. An inexpensive digital tape recorder suitable for neurophysiological signals. J Neurosci Methods. 1985 Oct;15(1):1–13. doi: 10.1016/0165-0270(85)90057-3. [DOI] [PubMed] [Google Scholar]
  16. Lewis D. I., Coote J. H. The influence of 5-hydroxytryptamine agonists and antagonists on identified sympathetic preganglionic neurones in the rat, in vivo. Br J Pharmacol. 1990 Apr;99(4):667–672. doi: 10.1111/j.1476-5381.1990.tb12987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Loewy A. D., McKellar S. Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res. 1981 Apr 27;211(1):146–152. doi: 10.1016/0006-8993(81)90074-3. [DOI] [PubMed] [Google Scholar]
  18. Loewy A. D. Raphe pallidus and raphe obscurus projections to the intermediolateral cell column in the rat. Brain Res. 1981 Oct 5;222(1):129–133. doi: 10.1016/0006-8993(81)90946-x. [DOI] [PubMed] [Google Scholar]
  19. Ma R. C., Dun N. J. Excitation of lateral horn neurons of the neonatal rat spinal cord by 5-hydroxytryptamine. Brain Res. 1986 Jan;389(1-2):89–98. doi: 10.1016/0165-3806(86)90176-8. [DOI] [PubMed] [Google Scholar]
  20. Marlier L., Teilhac J. R., Cerruti C., Privat A. Autoradiographic mapping of 5-HT1, 5-HT1A, 5-HT1B and 5-HT2 receptors in the rat spinal cord. Brain Res. 1991 May 31;550(1):15–23. doi: 10.1016/0006-8993(91)90400-p. [DOI] [PubMed] [Google Scholar]
  21. McCall R. B. Evidence for a serotonergically mediated sympathoexcitatory response to stimulation of medullary raphe nuclei. Brain Res. 1984 Oct 8;311(1):131–139. doi: 10.1016/0006-8993(84)91405-7. [DOI] [PubMed] [Google Scholar]
  22. McCall R. B. Serotonergic excitation of sympathetic preganglionic neurons: a microiontophoretic study. Brain Res. 1983 Dec 19;289(1-2):121–127. doi: 10.1016/0006-8993(83)90012-4. [DOI] [PubMed] [Google Scholar]
  23. Pickering A. E., Spanswick D., Logan S. D. Whole-cell recordings from sympathetic preganglionic neurons in rat spinal cord slices. Neurosci Lett. 1991 Sep 16;130(2):237–242. doi: 10.1016/0304-3940(91)90405-i. [DOI] [PubMed] [Google Scholar]
  24. Pilowsky P. M., Kapoor V., Minson J. B., West M. J., Chalmers J. P. Spinal cord serotonin release and raised blood pressure after brainstem kainic acid injection. Brain Res. 1986 Feb 26;366(1-2):354–357. doi: 10.1016/0006-8993(86)91318-1. [DOI] [PubMed] [Google Scholar]
  25. Sheldon P. W., Aghajanian G. K. Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence for mediation by 5-HT1C receptors in pyramidal cells and 5-HT2 receptors in interneurons. Synapse. 1991 Nov;9(3):208–218. doi: 10.1002/syn.890090307. [DOI] [PubMed] [Google Scholar]
  26. Spanswick D., Logan S. D. Spontaneous rhythmic activity in the intermediolateral cell nucleus of the neonate rat thoracolumbar spinal cord in vitro. Neuroscience. 1990;39(2):395–403. doi: 10.1016/0306-4522(90)90276-a. [DOI] [PubMed] [Google Scholar]
  27. Vera P. L., Holets V. R., Miller K. E. Ultrastructural evidence of synaptic contacts between substance P-, enkephalin-, and serotonin-immunoreactive terminals and retrogradely labeled sympathetic preganglionic neurons in the rat: a study using a double-peroxidase procedure. Synapse. 1990;6(3):221–229. doi: 10.1002/syn.890060303. [DOI] [PubMed] [Google Scholar]
  28. Wallis D. I., Connell L. A., Kvaltinova Z. Further studies on the action of 5-hydroxytryptamine on lumbar motoneurones in the rat isolated spinal cord. Naunyn Schmiedebergs Arch Pharmacol. 1991 Apr;343(4):344–352. doi: 10.1007/BF00179038. [DOI] [PubMed] [Google Scholar]
  29. Wang M. Y., Dun N. J. 5-Hydroxytryptamine responses in neonate rat motoneurones in vitro. J Physiol. 1990 Nov;430:87–103. doi: 10.1113/jphysiol.1990.sp018283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yoshimura M., Nishi S. Intracellular recordings from lateral horn cells fo the spinal cord in vitro. J Auton Nerv Syst. 1982 Jul;6(1):5–11. doi: 10.1016/0165-1838(82)90017-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES