Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Oct 15;480(Pt 2):333–341. doi: 10.1113/jphysiol.1994.sp020363

Electrophysiological studies of the interaction between ventricular myocardium and coronary artery in monkeys.

F Mekata 1
PMCID: PMC1155849  PMID: 7869248

Abstract

1. The electrical influence of the coronary arteries on ventricular muscle was investigated using strips of ventricle that included a section of coronary artery (cardiac preparation) and isolated coronary arteries dissected from the ventricle (arterial preparation). 2. In cardiac preparations, a hyperpolarizing response was recorded from the epicardial surface of the ventricular muscle when acetylcholine (ACh) was added to the organ bath, on condition that the internal diameter of the coronary artery was between 0.15 and 0.6 mm, that the vessel ran at a depth of 0.2 mm or less below the surface of the preparation, and that the recording microelectrode was immediately adjacent to the artery. 3. ACh-induced hyperpolarization was not detected in cardiac preparations which had no detectable arteries, or at sites distant from visible arteries. 4. In arterial preparations, a similar hyperpolarizing response was evoked by ACh in all vessels with an i.d. of 0.15-1.2 mm. 5. In a preparation combining ventricular muscle and a strip of coronary artery (with the vascular endothelium in direct contact with the epicardial surface of the ventricular myocardium), hyperpolarization was also observed from the ventricular muscle after application of ACh. 6. The hyperpolarizing response of the ventricular myocardium in the cardiac preparation and in combined preparations of ventricular muscle and coronary artery was weakened or abolished by removal of the arterial endothelium. 7. These results indicate that some substance released from the coronary arterial endothelium after stimulation by ACh induces hyperpolarization of the ventricular myocardium.

Full text

PDF
333

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brutsaert D. L., Meulemans A. L., Sipido K. R., Sys S. U. Effects of damaging the endocardial surface on the mechanical performance of isolated cardiac muscle. Circ Res. 1988 Feb;62(2):358–366. doi: 10.1161/01.res.62.2.358. [DOI] [PubMed] [Google Scholar]
  2. Bény J. L., Brunet P. C. Electrophysiological and mechanical effects of substance P and acetylcholine on rabbit aorta. J Physiol. 1988 Apr;398:277–289. doi: 10.1113/jphysiol.1988.sp017042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cannell M. B., Sage S. O. Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells. J Physiol. 1989 Dec;419:555–568. doi: 10.1113/jphysiol.1989.sp017886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen G. F., Suzuki H. Calcium dependency of the endothelium-dependent hyperpolarization in smooth muscle cells of the rabbit carotid artery. J Physiol. 1990 Feb;421:521–534. doi: 10.1113/jphysiol.1990.sp017959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen G., Suzuki H. Some electrical properties of the endothelium-dependent hyperpolarization recorded from rat arterial smooth muscle cells. J Physiol. 1989 Mar;410:91–106. doi: 10.1113/jphysiol.1989.sp017522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feletou M., Vanhoutte P. M. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol. 1988 Mar;93(3):515–524. doi: 10.1111/j.1476-5381.1988.tb10306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fort S., Lewis M. J. A factor released from coronary vascular endothelium inhibits myocardial contractile performance. Am J Physiol. 1993 Mar;264(3 Pt 2):H830–H836. doi: 10.1152/ajpheart.1993.264.3.H830. [DOI] [PubMed] [Google Scholar]
  8. Fozzard H. A., Lee C. O. Influence of changes in external potassium and chloride ions on membrane potential and intracellular potassium ion activity in rabbit ventricular muscle. J Physiol. 1976 Apr;256(3):663–689. doi: 10.1113/jphysiol.1976.sp011345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffith T. M., Edwards D. H., Lewis M. J., Newby A. C., Henderson A. H. The nature of endothelium-derived vascular relaxant factor. Nature. 1984 Apr 12;308(5960):645–647. doi: 10.1038/308645a0. [DOI] [PubMed] [Google Scholar]
  10. HOFFMAN B. F., SUCKLING E. E. Cellular potentials of intact mammalian hearts. Am J Physiol. 1952 Aug;170(2):357–362. doi: 10.1152/ajplegacy.1952.170.2.357. [DOI] [PubMed] [Google Scholar]
  11. Kitamura K., Kuriyama H. Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea-pig. J Physiol. 1979 Aug;293:119–133. doi: 10.1113/jphysiol.1979.sp012881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kristek F., Gerová M. Myoendothelial relations in the conduit coronary artery of the dog and rabbit. J Vasc Res. 1992 Jan-Feb;29(1):29–32. doi: 10.1159/000158928. [DOI] [PubMed] [Google Scholar]
  13. Lee C. O., Fozzard H. A. Activities of potassium and sodium ions in rabbit heart muscle. J Gen Physiol. 1975 Jun;65(6):695–708. doi: 10.1085/jgp.65.6.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mekata F. Electrical responses of coronary artery smooth muscle associated with the cardiac muscle action potential in the monkey. J Physiol. 1991 Aug;439:239–256. doi: 10.1113/jphysiol.1991.sp018665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morad M., Orkand R. K. Excitation-concentration coupling in frog ventricle: evidence from voltage clamp studies. J Physiol. 1971 Dec;219(1):167–189. doi: 10.1113/jphysiol.1971.sp009656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nagao T., Vanhoutte P. M. Hyperpolarization as a mechanism for endothelium-dependent relaxations in the porcine coronary artery. J Physiol. 1992 Jan;445:355–367. doi: 10.1113/jphysiol.1992.sp018928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  18. Parkington H. C., Tare M., Tonta M. A., Coleman H. A. Stretch revealed three components in the hyperpolarization of guinea-pig coronary artery in response to acetylcholine. J Physiol. 1993 Jun;465:459–476. doi: 10.1113/jphysiol.1993.sp019687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ramaciotti C., Sharkey A., McClellan G., Winegrad S. Endothelial cells regulate cardiac contractility. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4033–4036. doi: 10.1073/pnas.89.9.4033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rubanyi G. M., Lorenz R. R., Vanhoutte P. M. Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am J Physiol. 1985 Jul;249(1 Pt 2):H95–101. doi: 10.1152/ajpheart.1985.249.1.H95. [DOI] [PubMed] [Google Scholar]
  21. Rubanyi G. M., Vanhoutte P. M. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986 May;250(5 Pt 2):H822–H827. doi: 10.1152/ajpheart.1986.250.5.H822. [DOI] [PubMed] [Google Scholar]
  22. Singer H. A., Peach M. J. Calcium- and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension. 1982 May-Jun;4(3 Pt 2):19–25. [PubMed] [Google Scholar]
  23. Smith J. A., Shah A. M., Lewis M. J. Factors released from endocardium of the ferret and pig modulate myocardial contraction. J Physiol. 1991 Aug;439:1–14. doi: 10.1113/jphysiol.1991.sp018653. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES