Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Nov 15;481(Pt 1):129–137. doi: 10.1113/jphysiol.1994.sp020424

Aminophylline enhances resting Ca2+ concentrations and twitch tension by adenosine receptor blockade in Rana pipiens.

K I Clark 1, S R Barry 1
PMCID: PMC1155871  PMID: 7853235

Abstract

1. We hypothesized that the xanthine aminophylline acts to block adenosine receptors on the surface of skeletal muscle fibres, thereby inhibiting a depressant action of endogenous adenosine. We further hypothesized that this action results in increased concentrations of intracellular resting Ca2+ and enhanced twitch tension upon muscle stimulation. 2. Peak twitch tension (Pt) of the semitendinosus muscle in normal frog Ringer solution (NFR) ranged from 6.8 to 9.4 g. Intracellular Ca2+ concentrations in control resting fibres ranged from 67 to 70 nM. Aminophylline at 100 microM produced increases of 26 and 22% in Pt and Ca2+ concentrations, respectively. 3. The adenosine receptor antagonists 8-phenyltheophylline (8-PT) and 1,3-dipropyl-7-methylxanthine (1,3-d-7-M) both increased Pt by 32% over values in NFR. In addition, 1,3-d-7-M increased resting Ca2+ concentrations by 29% over control levels. 4. Adenosine deaminase increased twitch tension and resting intracellular Ca2+ concentrations by 22 and 26% over controls, respectively. 5. N6-(2-phenylisopropyl)adenosine (R-PIA, 1 microM), a potent adenosine analogue, partially blocked both the increase in Pt and intracellular Ca2+ concentrations induced by the xanthines, possibly by competing for the adenosine receptor. 6. The data herein provide support for the existence of adenosine receptors on the membranes of skeletal muscle fibres and suggest a possible role for adenosine receptors in the regulation of twitch tension.

Full text

PDF
129

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abstracts of the International symposium on localization and movement of cytoplasmic calcium in living muscle. Tokyo, May 18-20, 1987. J Muscle Res Cell Motil. 1987 Oct;8(5):461–472. doi: 10.1007/BF01578435. [DOI] [PubMed] [Google Scholar]
  2. Ahlijanian M. K., Takemori A. E. Effects of caffeine and 8-phenyltheophylline on the actions of purines and opiates in the guinea-pig ileum. J Pharmacol Exp Ther. 1986 Jan;236(1):171–176. [PubMed] [Google Scholar]
  3. Aubier M., De Troyer A., Sampson M., Macklem P. T., Roussos C. Aminophylline improves diaphragmatic contractility. N Engl J Med. 1981 Jul 30;305(5):249–252. doi: 10.1056/NEJM198107303050503. [DOI] [PubMed] [Google Scholar]
  4. Ballard H. J., Cotterrell D., Karim F. The influence of blood flow rate on adenosine release from contracting dog skeletal muscle. Q J Exp Physiol. 1989 Mar;74(2):97–107. doi: 10.1113/expphysiol.1989.sp003267. [DOI] [PubMed] [Google Scholar]
  5. Barry S. R. Dual effects of theophylline on spontaneous transmitter release from frog motor nerve terminals. J Neurosci. 1988 Dec;8(12):4427–4433. doi: 10.1523/JNEUROSCI.08-12-04427.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blinks J. R., Olson C. B., Jewell B. R., Bravený P. Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Evidence for a dual mechanism of action. Circ Res. 1972 Apr;30(4):367–392. doi: 10.1161/01.res.30.4.367. [DOI] [PubMed] [Google Scholar]
  7. Bockman E. L., Berne R. M., Rubio R. Release of adenosine and lack of release of ATP from contracting skeletal muscle. Pflugers Arch. 1975 Mar 26;355(3):229–241. doi: 10.1007/BF00583686. [DOI] [PubMed] [Google Scholar]
  8. Bruns R. F., Daly J. W., Snyder S. H. Adenosine receptor binding: structure-activity analysis generates extremely potent xanthine antagonists. Proc Natl Acad Sci U S A. 1983 Apr;80(7):2077–2080. doi: 10.1073/pnas.80.7.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Challiss R. A., Richards S. J., Budohoski L. Characterization of the adenosine receptor modulating insulin action in rat skeletal muscle. Eur J Pharmacol. 1992 Jun 5;226(2):121–128. doi: 10.1016/0922-4106(92)90172-r. [DOI] [PubMed] [Google Scholar]
  10. Daly J. W. Adenosine receptors: targets for future drugs. J Med Chem. 1982 Mar;25(3):197–207. doi: 10.1021/jm00345a001. [DOI] [PubMed] [Google Scholar]
  11. Daly J. W., Padgett W. L., Shamim M. T. Analogues of caffeine and theophylline: effect of structural alterations on affinity at adenosine receptors. J Med Chem. 1986 Jul;29(7):1305–1308. doi: 10.1021/jm00157a035. [DOI] [PubMed] [Google Scholar]
  12. Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
  13. Ehrlich B. E., Watras J. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature. 1988 Dec 8;336(6199):583–586. doi: 10.1038/336583a0. [DOI] [PubMed] [Google Scholar]
  14. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  15. Endo M., Tanaka M., Ogawa Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature. 1970 Oct 3;228(5266):34–36. doi: 10.1038/228034a0. [DOI] [PubMed] [Google Scholar]
  16. Godt R. E., Maughan D. W. On the composition of the cytosol of relaxed skeletal muscle of the frog. Am J Physiol. 1988 May;254(5 Pt 1):C591–C604. doi: 10.1152/ajpcell.1988.254.5.C591. [DOI] [PubMed] [Google Scholar]
  17. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  18. Himpens B., Lydrup M. L., Hellstrand P., Casteels R. Free cytosolic calcium during spontaneous contractions in smooth muscle of the guinea-pig mesotubarium. Pflugers Arch. 1990 Dec;417(4):404–409. doi: 10.1007/BF00370660. [DOI] [PubMed] [Google Scholar]
  19. Howell S., Roussos C. Isoproterenol and aminophylline improve contractility of fatigued canine diaphragm. Am Rev Respir Dis. 1984 Jan;129(1):118–124. doi: 10.1164/arrd.1984.129.1.118. [DOI] [PubMed] [Google Scholar]
  20. Iaizzo P. A., Seewald M., Oakes S. G., Lehmann-Horn F. The use of Fura-2 to estimate myoplasmic [Ca2+] in human skeletal muscle. Cell Calcium. 1989 Apr;10(3):151–158. doi: 10.1016/0143-4160(89)90069-9. [DOI] [PubMed] [Google Scholar]
  21. Ikemoto N., Antoniu B., Mészáros L. G. Rapid flow chemical quench studies of calcium release from isolated sarcoplasmic reticulum. J Biol Chem. 1985 Nov 15;260(26):14096–14100. [PubMed] [Google Scholar]
  22. Jacquemond V., Csernoch L., Klein M. G., Schneider M. F. Voltage-gated and calcium-gated calcium release during depolarization of skeletal muscle fibers. Biophys J. 1991 Oct;60(4):867–873. doi: 10.1016/S0006-3495(91)82120-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klein M. G., Simon B. J., Schneider M. F. Effects of caffeine on calcium release from the sarcoplasmic reticulum in frog skeletal muscle fibres. J Physiol. 1990 Jun;425:599–626. doi: 10.1113/jphysiol.1990.sp018120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klein M. G., Simon B. J., Szucs G., Schneider M. F. Simultaneous recording of calcium transients in skeletal muscle using high- and low-affinity calcium indicators. Biophys J. 1988 Jun;53(6):971–988. doi: 10.1016/S0006-3495(88)83178-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kramer G. L., Wells J. N. Xanthines and skeletal muscle: lack of relationship between phosphodiesterase inhibition and increased twitch tension in rat diaphragms. Mol Pharmacol. 1980 Jan;17(1):73–78. [PubMed] [Google Scholar]
  26. Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meissner G., Darling E., Eveleth J. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry. 1986 Jan 14;25(1):236–244. doi: 10.1021/bi00349a033. [DOI] [PubMed] [Google Scholar]
  28. Murciano D., Aubier M., Viirès N., Mal H., Pariente R. Effects of theophylline and enprofylline on diaphragmatic contractility. J Appl Physiol (1985) 1987 Jul;63(1):51–57. doi: 10.1152/jappl.1987.63.1.51. [DOI] [PubMed] [Google Scholar]
  29. Poenie M. Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. Cell Calcium. 1990 Feb-Mar;11(2-3):85–91. doi: 10.1016/0143-4160(90)90062-y. [DOI] [PubMed] [Google Scholar]
  30. Poucher S. M., Nowell C. G., Collis M. G. The role of adenosine in exercise hyperaemia of the gracilis muscle in anaesthetized cats. J Physiol. 1990 Aug;427:19–29. doi: 10.1113/jphysiol.1990.sp018158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ribeiro J. A., Sebastião A. M. On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J Physiol. 1987 Mar;384:571–585. doi: 10.1113/jphysiol.1987.sp016470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ridings J. W., Barry S. R., Faulkner J. A. Aminophylline enhances contractility of frog skeletal muscle: an effect dependent on extracellular calcium. J Appl Physiol (1985) 1989 Aug;67(2):671–676. doi: 10.1152/jappl.1989.67.2.671. [DOI] [PubMed] [Google Scholar]
  33. Rousseau E., Ladine J., Liu Q. Y., Meissner G. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys. 1988 Nov 15;267(1):75–86. doi: 10.1016/0003-9861(88)90010-0. [DOI] [PubMed] [Google Scholar]
  34. Saadeh G. M., Ayash R. E., Saadeh F. M., Nassar C. F. Effect of aminophylline on calcium transport across the rat diaphragm. Gen Pharmacol. 1985;16(5):541–543. doi: 10.1016/0306-3623(85)90021-7. [DOI] [PubMed] [Google Scholar]
  35. Silinsky E. M. On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J Physiol. 1975 May;247(1):145–162. doi: 10.1113/jphysiol.1975.sp010925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smellie F. W., Davis C. W., Daly J. W., Wells J. N. Alkylxanthines: inhibition of adenosine-elicited accumulation of cyclic AMP in brain slices and of brain phosphodiesterase activity. Life Sci. 1979 Jun 25;24(26):2475–2482. doi: 10.1016/0024-3205(79)90458-2. [DOI] [PubMed] [Google Scholar]
  37. Smith J. S., Coronado R., Meissner G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J Gen Physiol. 1986 Nov;88(5):573–588. doi: 10.1085/jgp.88.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Snyder S. H., Katims J. J., Annau Z., Bruns R. F., Daly J. W. Adenosine receptors and behavioral actions of methylxanthines. Proc Natl Acad Sci U S A. 1981 May;78(5):3260–3264. doi: 10.1073/pnas.78.5.3260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Supinski G. S., Deal E. C., Jr, Kelsen S. G. Comparative effects of theophylline and adenosine on respiratory skeletal and smooth muscle. Am Rev Respir Dis. 1986 May;133(5):809–813. [PubMed] [Google Scholar]
  40. Tominaga S., Curnish R. R., Belardinelli L., Rubio R., Berne R. M. Adenosine release during early and sustained exercise of canine skeletal muscle. Am J Physiol. 1980 Feb;238(2):H156–H163. doi: 10.1152/ajpheart.1980.238.2.H156. [DOI] [PubMed] [Google Scholar]
  41. Varagić V. M., Kentera D. Interactions of calcium, dibutyryl cyclic AMP, isoprenaline and aminophylline on the isometric contraction of the isolated hemidiaphragm of the rat. Naunyn Schmiedebergs Arch Pharmacol. 1978 May;303(1):47–53. doi: 10.1007/BF00496184. [DOI] [PubMed] [Google Scholar]
  42. Viires N., Aubier M., Murciano D., Marty C., Pariente R. Effects of theophylline on isolated diaphragmatic fibers. A model for pharmacologic studies on diaphragmatic contractility. Am Rev Respir Dis. 1986 Jun;133(6):1060–1064. doi: 10.1164/arrd.1986.133.6.1060. [DOI] [PubMed] [Google Scholar]
  43. Westerblad H., Allen D. G. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J Gen Physiol. 1991 Sep;98(3):615–635. doi: 10.1085/jgp.98.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Williams D. A., Fay F. S. Intracellular calibration of the fluorescent calcium indicator Fura-2. Cell Calcium. 1990 Feb-Mar;11(2-3):75–83. doi: 10.1016/0143-4160(90)90061-x. [DOI] [PubMed] [Google Scholar]
  45. van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES