Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Nov 15;481(Pt 1):163–175. doi: 10.1113/jphysiol.1994.sp020427

Effects of increased and decreased tissue pressure on haemodynamic and capillary events in cat skeletal muscle.

S Mellander 1, U Albert 1
PMCID: PMC1155874  PMID: 7853239

Abstract

1. The controversial problem concerning the unusual haemodynamics of the deranged circulation during increased hydrostatic tissue pressure (PT) was elucidated by detailed studies of arterial, capillary and venous functions in cat skeletal muscle exposed to graded experimental changes of PT over a wide range. 2. The results indicated that the impaired circulatory state in skeletal muscle during raised tissue pressure is characterized by the following train of events: (a) a primary partial passive compression of the most distal part of the venous system due to negative vascular transmural pressure selectively at this site, in turn leading to the prompt development of a distinct 'venous outflow orifice resistance' graded in relation to the PT rise; (b) a consequent reduction of blood flow graded in relation to this resistance increase; (c) a rise in intramuscular venous pressure proximal of the 'venous outflow orifice' by the same extent as the PT increase; (d) transmission of the raised venous pressure to more proximal vessels in relation to the prevailing segmental resistance ratios; (e) a consequent maintenance of clearly positive transmural pressures in all vascular sections proximal to the 'venous outflow orifice', preventing collapse of these vessels; (f) maintenance of a largely normal capillary filtration coefficient and functional capillary surface area; and (g) an increase in capillary pressure by approximately 85% of the PT rise which reduces the rate of net transcapillary fluid absorption to about one-seventh of that expected from the PT rise per se. 3. Previous concepts of a 'vascular waterfall phenomenon', a capillary collapse, or an arteriolar 'critical closure phenomenon' did not seem to be valid for the skeletal muscle circulation during increased PT. 4. The rate of net transcapillary fluid flux per unit PT change was much smaller during positive than negative PT, since capillary pressure rose considerably when PT was increased above control, but was largely unchanged when PT was decreased below control. 5. Possible ways to improve the circulatory state in conditions with an oedema-induced tissue pressure rise are discussed.

Full text

PDF
163

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asgeirsson B., Grände P. O., Nordström C. H. A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med. 1994;20(4):260–267. doi: 10.1007/BF01708961. [DOI] [PubMed] [Google Scholar]
  2. Ashton H. The effect of increased tissue pressure on blood flow. Clin Orthop Relat Res. 1975 Nov-Dec;(113):15–26. doi: 10.1097/00003086-197511000-00004. [DOI] [PubMed] [Google Scholar]
  3. Badeer H. S., Hicks J. W. Hemodynamics of vascular 'waterfall': is the analogy justified? Respir Physiol. 1992 Feb;87(2):205–217. doi: 10.1016/0034-5687(92)90060-a. [DOI] [PubMed] [Google Scholar]
  4. Bellamy R. F. Calculation of coronary vascular resistance. Cardiovasc Res. 1980 May;14(5):261–269. doi: 10.1093/cvr/14.5.261. [DOI] [PubMed] [Google Scholar]
  5. Björnberg J., Grände P. O., Maspers M., Mellander S. Site of autoregulatory reactions in the vascular bed of cat skeletal muscle as determined with a new technique for segmental vascular resistance recordings. Acta Physiol Scand. 1988 Jun;133(2):199–210. doi: 10.1111/j.1748-1716.1988.tb08399.x. [DOI] [PubMed] [Google Scholar]
  6. DUOMARCO J. L., RIMINI R. Energy and hydraulic gradients along systemic veins. Am J Physiol. 1954 Aug;178(2):215–220. doi: 10.1152/ajplegacy.1954.178.2.215. [DOI] [PubMed] [Google Scholar]
  7. Downey J. M., Kirk E. S. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res. 1975 Jun;36(6):753–760. doi: 10.1161/01.res.36.6.753. [DOI] [PubMed] [Google Scholar]
  8. Gamble J., Gartside I. B., Christ F. A reassessment of mercury in silastic strain gauge plethysmography for microvascular permeability assessment in man. J Physiol. 1993 May;464:407–422. doi: 10.1113/jphysiol.1993.sp019642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gosselin R. E., Kaplow S. M. Venous waterfalls in coronary circulation. J Theor Biol. 1991 Mar 21;149(2):265–279. doi: 10.1016/s0022-5193(05)80281-4. [DOI] [PubMed] [Google Scholar]
  10. Grände P. O., Borgström P. An electromic differential pressure flowmeter and a resistance meter for continuous measurement of vascular resistance. Acta Physiol Scand. 1978 Feb;102(2):224–230. doi: 10.1111/j.1748-1716.1978.tb06066.x. [DOI] [PubMed] [Google Scholar]
  11. Grände P. O., Järhult J., Mellander S. Methods for gravimetric registration of changes in tissue volume. Acta Physiol Scand. 1974 Jun;91(2):211–215. doi: 10.1111/j.1748-1716.1974.tb05678.x. [DOI] [PubMed] [Google Scholar]
  12. HARASAWA M., RODBARD S. The effects on pulmonary vascular resistance of inflation, transpulmonary air pressure, and pulmonary venous pressure. Cardiologia. 1961 Sep;39:245–252. doi: 10.1159/000167365. [DOI] [PubMed] [Google Scholar]
  13. Haraldsson B., Rippe B. Transcapillary clearance of albumin in rat skeletal muscle monitored by external detection. Effects of alterations in capillary surface area. Acta Physiol Scand. 1988 Apr;132(4):495–504. doi: 10.1111/j.1748-1716.1988.tb08356.x. [DOI] [PubMed] [Google Scholar]
  14. Holt J. P. Flow through collapsible tubes and through in situ veins. IEEE Trans Biomed Eng. 1969 Oct;16(4):274–283. doi: 10.1109/tbme.1969.4502659. [DOI] [PubMed] [Google Scholar]
  15. Klocke F. J., Mates R. E., Canty J. M., Jr, Ellis A. K. Coronary pressure-flow relationships. Controversial issues and probable implications. Circ Res. 1985 Mar;56(3):310–323. doi: 10.1161/01.res.56.3.310. [DOI] [PubMed] [Google Scholar]
  16. Maspers M., Björnberg J., Mellander S. Relation between capillary pressure and vascular tone over the range from maximum dilatation to maximum constriction in cat skeletal muscle. Acta Physiol Scand. 1990 Sep;140(1):73–83. doi: 10.1111/j.1748-1716.1990.tb08977.x. [DOI] [PubMed] [Google Scholar]
  17. Mellander S., Björnberg J., Maspers M., Myrhage R. Method for continuous recording of hydrostatic exchange vessel pressure in cat skeletal muscle. Acta Physiol Scand. 1987 Mar;129(3):325–335. doi: 10.1111/j.1748-1716.1987.tb08076.x. [DOI] [PubMed] [Google Scholar]
  18. Mellander S., Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev. 1968 Sep;20(3):117–196. [PubMed] [Google Scholar]
  19. Mellander S., Maspers M., Björnberg J., Andersson L. O. Autoregulation of capillary pressure and filtration in cat skeletal muscle in states of normal and reduced vascular tone. Acta Physiol Scand. 1987 Mar;129(3):337–351. doi: 10.1111/j.1748-1716.1987.tb08077.x. [DOI] [PubMed] [Google Scholar]
  20. Mellander S., Nordenfelt I. Comparative effects of dihydroergotamine and noradrenaline on resistance, exchange and capacitance functions in the peripheral circulation. Clin Sci. 1970 Aug;39(2):183–201. doi: 10.1042/cs0390183. [DOI] [PubMed] [Google Scholar]
  21. Miller J. D. Head injury and brain ischaemia--implications for therapy. Br J Anaesth. 1985 Jan;57(1):120–130. doi: 10.1093/bja/57.1.120. [DOI] [PubMed] [Google Scholar]
  22. PERMUTT S., BROMBERGER-BARNEA B., BANE H. N. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med Thorac. 1962;19:239–260. doi: 10.1159/000192224. [DOI] [PubMed] [Google Scholar]
  23. PERMUTT S., RILEY R. L. HEMODYNAMICS OF COLLAPSIBLE VESSELS WITH TONE: THE VASCULAR WATERFALL. J Appl Physiol. 1963 Sep;18:924–932. doi: 10.1152/jappl.1963.18.5.924. [DOI] [PubMed] [Google Scholar]
  24. Reneman R. S., Slaaf D. W., Lindbom L., Tangelder G. J., Arfors K. E. Muscle blood flow disturbances produced by simultaneously elevated venous and total muscle tissue pressure. Microvasc Res. 1980 Nov;20(3):307–318. doi: 10.1016/0026-2862(80)90031-x. [DOI] [PubMed] [Google Scholar]
  25. Todd N. V., Graham D. I. Blood-brain barrier damage in traumatic brain contusions. Acta Neurochir Suppl (Wien) 1990;51:296–299. doi: 10.1007/978-3-7091-9115-6_100. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES