Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Nov 15;481(Pt 1):185–195. doi: 10.1113/jphysiol.1994.sp020429

Effect of inhibitors of nitric oxide release and action on vascular tone in isolated lungs of pig, sheep, dog and man.

G Cremona 1, A M Wood 1, L W Hall 1, E A Bower 1, T Higenbottam 1
PMCID: PMC1155876  PMID: 7853241

Abstract

1. The actions of inhibitors of the release or action of nitric oxide (NO) on pulmonary vascular resistance (PVR) were investigated in lungs isolated from pig, sheep, dog and man. 2. In pig, sheep and human lungs perfused with Krebs-dextran solution, both N omega-nitro-L-arginine methyl ester (L-NAME; 10(-5) M) and Methylene Blue (10(-4) M) increased basal PVR. This increase was reversed by sodium nitroprusside (10(-5) M). In pig lungs N omega-monomethyl-L-arginine (10(-4) M) increased PVR by 154%. This increase was partially reversed by L-arginine (10(-3) M). L-NAME had no effect in dog lungs. 3. Pulmonary artery pressure-flow (PPA/Q) relationships were studied over a wide range of flows. In pigs, sheep and human lungs perfused with Krebs-dextran solution, L-NAME increased the PPA/Q slope. This increase was reversed by sodium nitroprusside. In dog lungs L-NAME had no effect. 4. In blood-perfused lungs, the respective responses to L-NAME were similar to those observed with saline. Acute hypoxia in pig and dog lungs increased intercept pressure. Addition of L-NAME during hypoxia increased the PPA/Q slope in both species. 5. In the human, there was no difference in the absolute increase of PVR or PPA/Q slope elicited by L-NAME between hypertensive and control lungs. 6. We conclude that NO is continuously released in the pulmonary vascular bed of pig, sheep and humans under normoxic conditions. In dog lungs inhibition of NO synthesis increases PVR only under hypoxic conditions. In human lungs with pulmonary hypertension, NO is still released under basal conditions.

Full text

PDF
185

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adnot S., Raffestin B., Eddahibi S., Braquet P., Chabrier P. E. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest. 1991 Jan;87(1):155–162. doi: 10.1172/JCI114965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archer S. L., Rist K., Nelson D. P., DeMaster E. G., Cowan N., Weir E. K. Comparison of the hemodynamic effects of nitric oxide and endothelium-dependent vasodilators in intact lungs. J Appl Physiol (1985) 1990 Feb;68(2):735–747. doi: 10.1152/jappl.1990.68.2.735. [DOI] [PubMed] [Google Scholar]
  3. Archer S. L., Tolins J. P., Raij L., Weir E. K. Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium derived relaxing factor. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1198–1205. doi: 10.1016/0006-291x(89)91796-8. [DOI] [PubMed] [Google Scholar]
  4. Barer G., Emery C., Stewart A., Bee D., Howard P. Endothelial control of the pulmonary circulation in normal and chronically hypoxic rats. J Physiol. 1993 Apr;463:1–16. doi: 10.1113/jphysiol.1993.sp019581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhattacharya J., Nakahara K., Staub N. C. Effect of edema on pulmonary blood flow in the isolated perfused dog lung lobe. J Appl Physiol Respir Environ Exerc Physiol. 1980 Mar;48(3):444–449. doi: 10.1152/jappl.1980.48.3.444. [DOI] [PubMed] [Google Scholar]
  6. Dinh Xuan A. T., Higenbottam T. W., Clelland C., Pepke-Zaba J., Cremona G., Wallwork J. Impairment of pulmonary endothelium-dependent relaxation in patients with Eisenmenger's syndrome. Br J Pharmacol. 1990 Jan;99(1):9–10. doi: 10.1111/j.1476-5381.1990.tb14643.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dinh Xuan A. T., Higenbottam T. W., Clelland C., Pepke-Zaba J., Wells F. C., Wallwork J. Acetylcholine and adenosine diphosphate cause endothelium-dependent relaxation of isolated human pulmonary arteries. Eur Respir J. 1990 Jun;3(6):633–638. [PubMed] [Google Scholar]
  8. Dinh-Xuan A. T., Higenbottam T. W., Clelland C. A., Pepke-Zaba J., Cremona G., Butt A. Y., Large S. R., Wells F. C., Wallwork J. Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease. N Engl J Med. 1991 May 30;324(22):1539–1547. doi: 10.1056/NEJM199105303242203. [DOI] [PubMed] [Google Scholar]
  9. Doyle M. P., Hoekstra J. W. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem. 1981 Jul;14(4):351–358. doi: 10.1016/s0162-0134(00)80291-3. [DOI] [PubMed] [Google Scholar]
  10. Evans H. G., Ryley H. C., Hallett I., Lewis M. J. Human red blood cells inhibit endothelium-derived relaxing factor (EDRF) activity. Eur J Pharmacol. 1989 Apr 25;163(2-3):361–364. doi: 10.1016/0014-2999(89)90207-0. [DOI] [PubMed] [Google Scholar]
  11. Feelisch M., Noack E. A. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol. 1987 Jul 2;139(1):19–30. doi: 10.1016/0014-2999(87)90493-6. [DOI] [PubMed] [Google Scholar]
  12. Ferreira S. H., Moncada S., Vane J. R. Indomethacin and aspirin abolish prostaglandin release from the spleen. Nat New Biol. 1971 Jun 23;231(25):237–239. doi: 10.1038/newbio231237a0. [DOI] [PubMed] [Google Scholar]
  13. Fineman J. R., Crowley M. R., Heymann M. A., Soifer S. J. In vivo attenuation of endothelium-dependent pulmonary vasodilation by methylene blue. J Appl Physiol (1985) 1991 Aug;71(2):735–741. doi: 10.1152/jappl.1991.71.2.735. [DOI] [PubMed] [Google Scholar]
  14. Fineman J. R., Heymann M. A., Soifer S. J. N omega-nitro-L-arginine attenuates endothelium-dependent pulmonary vasodilation in lambs. Am J Physiol. 1991 Apr;260(4 Pt 2):H1299–H1306. doi: 10.1152/ajpheart.1991.260.4.H1299. [DOI] [PubMed] [Google Scholar]
  15. Griffith T. M., Edwards D. H., Davies R. L., Henderson A. H. The role of EDRF in flow distribution: a microangiographic study of the rabbit isolated ear. Microvasc Res. 1989 Mar;37(2):162–177. doi: 10.1016/0026-2862(89)90035-6. [DOI] [PubMed] [Google Scholar]
  16. Griffith T. M., Edwards D. H., Henderson A. H. Unstimulated release of endothelium derived relaxing factor is independent of mitochondrial ATP generation. Cardiovasc Res. 1987 Aug;21(8):565–568. doi: 10.1093/cvr/21.8.565. [DOI] [PubMed] [Google Scholar]
  17. Hakim T. S., Chang H. K., Michel R. P. The rectilinear pressure-flow relationship in the pulmonary vasculature: zones 2 and 3. Respir Physiol. 1985 Jul;61(1):115–123. doi: 10.1016/0034-5687(85)90033-7. [DOI] [PubMed] [Google Scholar]
  18. Hakim T. S., Malik A. B. Hypoxic vasoconstriction in blood and plasma perfused lungs. Respir Physiol. 1988 Apr;72(1):109–121. doi: 10.1016/0034-5687(88)90083-7. [DOI] [PubMed] [Google Scholar]
  19. Hakim T. S., Michel R. P., Minami H., Chang H. K. Site of pulmonary hypoxic vasoconstriction studied with arterial and venous occlusion. J Appl Physiol Respir Environ Exerc Physiol. 1983 May;54(5):1298–1302. doi: 10.1152/jappl.1983.54.5.1298. [DOI] [PubMed] [Google Scholar]
  20. Hasunuma K., Yamaguchi T., Rodman D. M., O'Brien R. F., McMurtry I. F. Effects of inhibitors of EDRF and EDHF on vasoreactivity of perfused rat lungs. Am J Physiol. 1991 Feb;260(2 Pt 1):L97–104. doi: 10.1152/ajplung.1991.260.2.L97. [DOI] [PubMed] [Google Scholar]
  21. Hyman A. L., Kadowitz P. J., Lippton H. L. Methylene blue selectively inhibits pulmonary vasodilator responses in cats. J Appl Physiol (1985) 1989 Mar;66(3):1513–1517. doi: 10.1152/jappl.1989.66.3.1513. [DOI] [PubMed] [Google Scholar]
  22. Johns R. A., Linden J. M., Peach M. J. Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. Circ Res. 1989 Dec;65(6):1508–1515. doi: 10.1161/01.res.65.6.1508. [DOI] [PubMed] [Google Scholar]
  23. Julien M., Hakim T. S., Vahi R., Chang H. K. Effect of hematocrit on vascular pressure profile in dog lungs. J Appl Physiol (1985) 1985 Mar;58(3):743–748. doi: 10.1152/jappl.1985.58.3.743. [DOI] [PubMed] [Google Scholar]
  24. Kay J. M. Comparative morphologic features of the pulmonary vasculature in mammals. Am Rev Respir Dis. 1983 Aug;128(2 Pt 2):S53–S57. doi: 10.1164/arrd.1983.128.2P2.S53. [DOI] [PubMed] [Google Scholar]
  25. Liu S. F., Crawley D. E., Evans T. W., Barnes P. J. Endothelium-dependent nonadrenergic, noncholinergic neural relaxation in guinea pig pulmonary artery. J Pharmacol Exp Ther. 1992 Feb;260(2):541–548. [PubMed] [Google Scholar]
  26. Martin W., Drazan K. M., Newby A. C. Methylene blue but not changes in cyclic GMP inhibits resting and bradykinin-stimulated production of prostacyclin by pig aortic endothelial cells. Br J Pharmacol. 1989 May;97(1):51–56. doi: 10.1111/j.1476-5381.1989.tb11922.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
  28. Mazmanian G. M., Baudet B., Brink C., Cerrina J., Kirkiacharian S., Weiss M. Methylene blue potentiates vascular reactivity in isolated rat lungs. J Appl Physiol (1985) 1989 Mar;66(3):1040–1045. doi: 10.1152/jappl.1989.66.3.1040. [DOI] [PubMed] [Google Scholar]
  29. McMahon T. J., Hood J. S., Bellan J. A., Kadowitz P. J. N omega-nitro-L-arginine methyl ester selectively inhibits pulmonary vasodilator responses to acetylcholine and bradykinin. J Appl Physiol (1985) 1991 Nov;71(5):2026–2031. doi: 10.1152/jappl.1991.71.5.2026. [DOI] [PubMed] [Google Scholar]
  30. McMahon T. J., Hood J. S., Kadowitz P. J. Pulmonary vasodilator response to vagal stimulation is blocked by N omega-nitro-L-arginine methyl ester in the cat. Circ Res. 1992 Feb;70(2):364–369. doi: 10.1161/01.res.70.2.364. [DOI] [PubMed] [Google Scholar]
  31. Michel C. C. Capillary permeability and how it may change. J Physiol. 1988 Oct;404:1–29. doi: 10.1113/jphysiol.1988.sp017275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mitzner W. Resistance of the pulmonary circulation. Clin Chest Med. 1983 May;4(2):127–137. [PubMed] [Google Scholar]
  33. Moncada S. The 1991 Ulf von Euler Lecture. The L-arginine: nitric oxide pathway. Acta Physiol Scand. 1992 Jul;145(3):201–227. doi: 10.1111/j.1748-1716.1992.tb09359.x. [DOI] [PubMed] [Google Scholar]
  34. Nishiwaki K., Nyhan D. P., Rock P., Desai P. M., Peterson W. P., Pribble C. G., Murray P. A. N omega-nitro-L-arginine and pulmonary vascular pressure-flow relationship in conscious dogs. Am J Physiol. 1992 May;262(5 Pt 2):H1331–H1337. doi: 10.1152/ajpheart.1992.262.5.H1331. [DOI] [PubMed] [Google Scholar]
  35. Orton E. C., Reeves J. T., Stenmark K. R. Pulmonary vasodilation with structurally altered pulmonary vessels and pulmonary hypertension. J Appl Physiol (1985) 1988 Dec;65(6):2459–2467. doi: 10.1152/jappl.1988.65.6.2459. [DOI] [PubMed] [Google Scholar]
  36. Peake M. D., Harabin A. L., Brennan N. J., Sylvester J. T. Steady-state vascular responses to graded hypoxia in isolated lungs of five species. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1214–1219. doi: 10.1152/jappl.1981.51.5.1214. [DOI] [PubMed] [Google Scholar]
  37. Persson M. G., Gustafsson L. E., Wiklund N. P., Moncada S., Hedqvist P. Endogenous nitric oxide as a probable modulator of pulmonary circulation and hypoxic pressor response in vivo. Acta Physiol Scand. 1990 Dec;140(4):449–457. doi: 10.1111/j.1748-1716.1990.tb09021.x. [DOI] [PubMed] [Google Scholar]
  38. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989 Feb;96(2):418–424. doi: 10.1111/j.1476-5381.1989.tb11833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Reitz B. A., Wallwork J. L., Hunt S. A., Pennock J. L., Billingham M. E., Oyer P. E., Stinson E. B., Shumway N. E. Heart-lung transplantation: successful therapy for patients with pulmonary vascular disease. N Engl J Med. 1982 Mar 11;306(10):557–564. doi: 10.1056/NEJM198203113061001. [DOI] [PubMed] [Google Scholar]
  41. Rubanyi G. M., Romero J. C., Vanhoutte P. M. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986 Jun;250(6 Pt 2):H1145–H1149. doi: 10.1152/ajpheart.1986.250.6.H1145. [DOI] [PubMed] [Google Scholar]
  42. Vallance P., Collier J., Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989 Oct 28;2(8670):997–1000. doi: 10.1016/s0140-6736(89)91013-1. [DOI] [PubMed] [Google Scholar]
  43. Wallwork J., Jones K., Cavarocchi N., Hakim M., Higenbottam T. Distant procurement of organs for clinical heart-lung transplantation using a single flush technique. Transplantation. 1987 Nov;44(5):654–658. doi: 10.1097/00007890-198711000-00012. [DOI] [PubMed] [Google Scholar]
  44. Wang C. G., Hakim T. S., Michel R. P., Chang H. K. Segmental pulmonary vascular resistance in progressive hydrostatic and permeability edema. J Appl Physiol (1985) 1985 Jul;59(1):242–247. doi: 10.1152/jappl.1985.59.1.242. [DOI] [PubMed] [Google Scholar]
  45. Warren J. B., Maltby N. H., MacCormack D., Barnes P. J. Pulmonary endothelium-derived relaxing factor is impaired in hypoxia. Clin Sci (Lond) 1989 Dec;77(6):671–676. doi: 10.1042/cs0770671. [DOI] [PubMed] [Google Scholar]
  46. Wennmalm A., Benthin G., Petersson A. S. Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol. 1992 Jul;106(3):507–508. doi: 10.1111/j.1476-5381.1992.tb14365.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES