Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Nov 15;481(Pt 1):207–215. doi: 10.1113/jphysiol.1994.sp020431

Regional alternans in relaxation and the onset of pulsus alternans in the heart of the anaesthetized pig.

C F Murphy 1, M J Lab 1, S M Horner 1, D J Dick 1, F G Harrison 1
PMCID: PMC1155878  PMID: 7853243

Abstract

1. The factors leading to the alternation in myocardial contractility believed primarily responsible for pulsus alternans are not known. We examine regional and global contraction patterns in the in situ heart at stimulation rates just below the threshold for pulsus alternans to determine if events occurring in the transition to alternans can give clues to cellular mechanisms. 2. Twelve pigs were anaesthetized, the chest wall removed and regional contraction measured in three areas of the left ventricle using tripodal strain gauges. We analysed regional and global dynamics during right atrial pacing at cycle lengths 50-150 ms greater than the threshold for pulsus alternans. 3. At pacing cycle lengths 50 ms greater than that required to produce pulsus alternans seven of twelve pigs showed alternans in the maximum rate of ventricular pressure decay but none showed alternans in the maximum rate of pressure rise. Pigs showing alternans in global relaxation were more likely to show alternans in regional contracility (P < 0.05). 4. Twenty-six of the thirty-six areas sampled showed alternans in end-diastolic length at pacing rates below the threshold for pulsus alternans. In fifteen of these areas alternation in end-diastolic length occurred in the absence of alternans in measures of contractility. 5. Alternans in global measures of relaxation may simply be a manifestation of regional alternans in contractility. It is therefore not appropriate, from global haemodynamic data, to suppose that alternans in relaxation is the primary abnormality in the generation of pulsus alternans.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
207

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler D., Wong A. Y., Mahler Y. Model of mechanical alternans in the mammalian myocardium. J Theor Biol. 1985 Dec 21;117(4):563–577. doi: 10.1016/s0022-5193(85)80238-1. [DOI] [PubMed] [Google Scholar]
  2. Aversano T., Maughan W. L., Hunter W. C., Kass D., Becker L. C. End-systolic measures of regional ventricular performance. Circulation. 1986 May;73(5):938–950. doi: 10.1161/01.cir.73.5.938. [DOI] [PubMed] [Google Scholar]
  3. Badeer H. S., Ryo U. Y., Gassner W. F., Kass E. J., Cavaluzzi J., Gilbert J. L., Brooks C. M. Factors affecting pulsus alternans in the rapidly driven heart and papillary muscle. Am J Physiol. 1967 Nov;213(5):1095–1101. doi: 10.1152/ajplegacy.1967.213.5.1095. [DOI] [PubMed] [Google Scholar]
  4. Brady A. J. Time and displacement dependence of cardiac contractility: problems in defining the active state and force-velocity relations. Fed Proc. 1965 Nov-Dec;24(6):1410–1420. [PubMed] [Google Scholar]
  5. Brutsaert D. L., Rademakers F. E., Sys S. U. Triple control of relaxation: implications in cardiac disease. Circulation. 1984 Jan;69(1):190–196. doi: 10.1161/01.cir.69.1.190. [DOI] [PubMed] [Google Scholar]
  6. Coetzee A., Fourie P., Badenhorst E. Effect of halothane, enflurane and isoflurane on the end-systolic pressure-length relationship. Can J Anaesth. 1987 Jul;34(4):351–357. doi: 10.1007/BF03010132. [DOI] [PubMed] [Google Scholar]
  7. Denton T. A., Diamond G. A., Helfant R. H., Khan S., Karagueuzian H. Fascinating rhythm: a primer on chaos theory and its application to cardiology. Am Heart J. 1990 Dec;120(6 Pt 1):1419–1440. doi: 10.1016/0002-8703(90)90258-y. [DOI] [PubMed] [Google Scholar]
  8. Dilly S. G., Lab M. J. Electrophysiological alternans and restitution during acute regional ischaemia in myocardium of anaesthetized pig. J Physiol. 1988 Aug;402:315–333. doi: 10.1113/jphysiol.1988.sp017206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fenton T. R., Cherry J. M., Klassen G. A. Transmural myocardial deformation in the canine left ventricular wall. Am J Physiol. 1978 Nov;235(5):H523–H530. doi: 10.1152/ajpheart.1978.235.5.H523. [DOI] [PubMed] [Google Scholar]
  10. Forrester J. S., Tyberg J. V., Wyatt H. L., Goldner S., Parmely W. W., Swan H. J. Pressure-length loop: a new method for simultaneous measurement of segmental and total cardiac function. J Appl Physiol. 1974 Nov;37(5):771–775. doi: 10.1152/jappl.1974.37.5.771. [DOI] [PubMed] [Google Scholar]
  11. Foëx P., Francis C. M., Cutfield G. R., Leone B. The pressure-length loop. Br J Anaesth. 1988;60(8 Suppl 1):65S–71S. doi: 10.1093/bja/60.suppl_1.65s. [DOI] [PubMed] [Google Scholar]
  12. Freeman G. L., Widman L. E., Campbell J. M., Colston J. T. An evaluation of pulsus alternans in closed-chest dogs. Am J Physiol. 1992 Jan;262(1 Pt 2):H278–H284. doi: 10.1152/ajpheart.1992.262.1.H278. [DOI] [PubMed] [Google Scholar]
  13. GLEASON W. L., BRAUNWALD E. Studies on Starling's law of the heart. VI. Relationships between left ventricular enddiatolic volume and stroke volume in man with observations on the mechanism of pulsus alternans. Circulation. 1962 May;25:841–848. doi: 10.1161/01.cir.25.5.841. [DOI] [PubMed] [Google Scholar]
  14. Glass L., Guevara M. R., Shrier A. Universal bifurcations and the classification of cardiac arrhythmias. Ann N Y Acad Sci. 1987;504:168–178. doi: 10.1111/j.1749-6632.1987.tb48731.x. [DOI] [PubMed] [Google Scholar]
  15. Goldberger A. L., Rigney D. R., West B. J. Chaos and fractals in human physiology. Sci Am. 1990 Feb;262(2):42–49. doi: 10.1038/scientificamerican0290-42. [DOI] [PubMed] [Google Scholar]
  16. Guntheroth W. G., Morgan B. C., McGough G. A., Scher A. M. Alternate deletion and potentiation as the cause of pulsus alternans. Am Heart J. 1969 Nov;78(5):669–681. doi: 10.1016/0002-8703(69)90519-5. [DOI] [PubMed] [Google Scholar]
  17. Kihara Y., Morgan J. P. Abnormal Cai2+ handling is the primary cause of mechanical alternans: study in ferret ventricular muscles. Am J Physiol. 1991 Dec;261(6 Pt 2):H1746–H1755. doi: 10.1152/ajpheart.1991.261.6.H1746. [DOI] [PubMed] [Google Scholar]
  18. Lab M. J., Allen D. G., Orchard C. H. The effects of shortening on myoplasmic calcium concentration and on the action potential in mammalian ventricular muscle. Circ Res. 1984 Dec;55(6):825–829. doi: 10.1161/01.res.55.6.825. [DOI] [PubMed] [Google Scholar]
  19. Lab M. J., Lee J. A. Changes in intracellular calcium during mechanical alternans in isolated ferret ventricular muscle. Circ Res. 1990 Mar;66(3):585–595. doi: 10.1161/01.res.66.3.585. [DOI] [PubMed] [Google Scholar]
  20. Lab M. J., Seed W. A. Pulsus alternans. Cardiovasc Res. 1993 Aug;27(8):1407–1412. doi: 10.1093/cvr/27.8.1407. [DOI] [PubMed] [Google Scholar]
  21. Lab M. J., Woollard K. V. Monophasic action potentials, electrocardiograms and mechanical performance in normal and ischaemic epicardial segments of the pig ventricle in situ. Cardiovasc Res. 1978 Sep;12(9):555–565. doi: 10.1093/cvr/12.9.555. [DOI] [PubMed] [Google Scholar]
  22. Lablanche J. M., Thieuleux F. A., Bertrand M. E. Pouls alternant: alternance des paramètres de la relaxation. Arch Mal Coeur Vaiss. 1984 Dec;77(13):1540–1546. [PubMed] [Google Scholar]
  23. Lee H. C., Mohabir R., Smith N., Franz M. R., Clusin W. T. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1. Correlation with monophasic action potentials and contraction. Circulation. 1988 Oct;78(4):1047–1059. doi: 10.1161/01.cir.78.4.1047. [DOI] [PubMed] [Google Scholar]
  24. Matre K., Hexeberg E., Lekven J. Fibre orientation in the left ventricle and its influence on local pressure-length loop analysis in cats. Clin Physiol. 1986 Jun;6(3):293–301. doi: 10.1111/j.1475-097x.1986.tb00626.x. [DOI] [PubMed] [Google Scholar]
  25. McGaughey M. D., Maughan W. L., Sunagawa K., Sagawa K. Alternating contractility in pulsus alternans studied in the isolated canine heart. Circulation. 1985 Feb;71(2):357–362. doi: 10.1161/01.cir.71.2.357. [DOI] [PubMed] [Google Scholar]
  26. Miller W. P., Liedtke A. J., Nellis S. H. End-systolic pressure-diameter relationships during pulsus alternans in intact pig hearts. Am J Physiol. 1986 Apr;250(4 Pt 2):H606–H611. doi: 10.1152/ajpheart.1986.250.4.H606. [DOI] [PubMed] [Google Scholar]
  27. Mitchell J. H., Sarnoff S. J., Sonnenblick E. H. THE DYNAMICS OF PULSUS ALTERNANS: ALTERNATING END-DIASTOLIC FIBER LENGTH AS A CAUSATIVE FACTOR. J Clin Invest. 1963 Jan;42(1):55–63. doi: 10.1172/JCI104696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murphy C. F., Lab M. J., Harrison F. G., Horner S. M., Dick D. J., Moutoussis M. Characterisation of regional myocardial dynamics during mechanical alternans in heart of anaesthetised pig. Cardiovasc Res. 1993 Sep;27(9):1639–1644. doi: 10.1093/cvr/27.9.1639. [DOI] [PubMed] [Google Scholar]
  29. Noble R. J., Nutter D. O. The demonstration of alternating contractile state in pulsus alternans. J Clin Invest. 1970 Jun;49(6):1166–1177. doi: 10.1172/JCI106331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Orchard C. H., McCall E., Kirby M. S., Boyett M. R. Mechanical alternans during acidosis in ferret heart muscle. Circ Res. 1991 Jan;68(1):69–76. doi: 10.1161/01.res.68.1.69. [DOI] [PubMed] [Google Scholar]
  31. Spear J. F., Moore E. N. A comparison of alternation in myocardial action potentials and contractility. Am J Physiol. 1971 Jun;220(6):1708–1716. doi: 10.1152/ajplegacy.1971.220.6.1708. [DOI] [PubMed] [Google Scholar]
  32. Suga H., Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974 Jul;35(1):117–126. doi: 10.1161/01.res.35.1.117. [DOI] [PubMed] [Google Scholar]
  33. Surawicz B., Fisch C. Cardiac alternans: diverse mechanisms and clinical manifestations. J Am Coll Cardiol. 1992 Aug;20(2):483–499. doi: 10.1016/0735-1097(92)90122-4. [DOI] [PubMed] [Google Scholar]
  34. Waldman L. K., Fung Y. C., Covell J. W. Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res. 1985 Jul;57(1):152–163. doi: 10.1161/01.res.57.1.152. [DOI] [PubMed] [Google Scholar]
  35. Weber K. T., Janicki J. S., Fishman A. P. Aerobic limit of the heart perfused at constant pressure. Am J Physiol. 1980 Feb;238(2):H118–H125. doi: 10.1152/ajpheart.1980.238.2.H118. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES