Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Dec 15;481(Pt 3):543–553. doi: 10.1113/jphysiol.1994.sp020462

Calcium channel currents in bovine adrenal chromaffin cells and their modulation by anaesthetic agents.

P Charlesworth 1, G Pocock 1, C D Richards 1
PMCID: PMC1155899  PMID: 7707224

Abstract

1. The calcium channel currents of bovine adrenal chromaffin cells were characterized using a variety of voltage pulse protocols and selective channel blockers before examination of their modulation by anaesthetic agents. 2. All the anaesthetics studied (halothane, methoxyflurane, etomidate and methohexitone) inhibited the calcium channel currents in a concentration-dependent manner and increased the rate of current decay. 3. The anaesthetics did not shift the current-voltage relation nor did they change the voltage for half-maximal channel activation derived from analysis of the voltage dependence of the tail currents. None of the anaesthetics appeared to alter the time constant of tail current decay. 4. To complement earlier studies of the inhibitory actions of anaesthetics on K(+)-evoked catecholamine secretion and the associated Ca2+ uptake, the IC50 values for etomidate and methohexitone were determined using a biochemical assay. The IC50 values for anaesthetic inhibition of calcium channel currents corresponded closely with those for inhibition of K(+)-evoked calcium uptake and catecholamine secretion. 5. The inhibitory effect of the volatile anaesthetics and etomidate is best explained by dual action: a reduction in the probability of channel opening coupled with an increase in the rate of channel inactivation. Methohexitone appeared to inhibit the currents by a use-dependent slow block.

Full text

PDF
543

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artalejo C. R., Dahmer M. K., Perlman R. L., Fox A. P. Two types of Ca2+ currents are found in bovine chromaffin cells: facilitation is due to the recruitment of one type. J Physiol. 1991 Jan;432:681–707. doi: 10.1113/jphysiol.1991.sp018406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bossu J. L., De Waard M., Feltz A. Inactivation characteristics reveal two calcium currents in adult bovine chromaffin cells. J Physiol. 1991 Jun;437:603–620. doi: 10.1113/jphysiol.1991.sp018614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bossu J. L., De Waard M., Feltz A. Two types of calcium channels are expressed in adult bovine chromaffin cells. J Physiol. 1991 Jun;437:621–634. doi: 10.1113/jphysiol.1991.sp018615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charlesworth P., Jacobson I., Pocock G., Richards C. D. The mechanism by which procaine inhibits catecholamine secretion from bovine chromaffin cells. Br J Pharmacol. 1992 Aug;106(4):802–812. doi: 10.1111/j.1476-5381.1992.tb14416.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eskinder H., Rusch N. J., Supan F. D., Kampine J. P., Bosnjak Z. J. The effects of volatile anesthetics on L- and T-type calcium channel currents in canine cardiac Purkinje cells. Anesthesiology. 1991 May;74(5):919–926. doi: 10.1097/00000542-199105000-00018. [DOI] [PubMed] [Google Scholar]
  6. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox A. P., Nowycky M. C., Tsien R. W. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol. 1987 Dec;394:149–172. doi: 10.1113/jphysiol.1987.sp016864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gandía L., García A. G., Morad M. ATP modulation of calcium channels in chromaffin cells. J Physiol. 1993 Oct;470:55–72. doi: 10.1113/jphysiol.1993.sp019847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gross R. A., Macdonald R. L. Differential actions of pentobarbitone on calcium current components of mouse sensory neurones in culture. J Physiol. 1988 Nov;405:187–203. doi: 10.1113/jphysiol.1988.sp017328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  11. Hans M., Illes P., Takeda K. The blocking effects of omega-conotoxin on Ca current in bovine chromaffin cells. Neurosci Lett. 1990 Jun 22;114(1):63–68. doi: 10.1016/0304-3940(90)90429-d. [DOI] [PubMed] [Google Scholar]
  12. Herrington J., Stern R. C., Evers A. S., Lingle C. J. Halothane inhibits two components of calcium current in clonal (GH3) pituitary cells. J Neurosci. 1991 Jul;11(7):2226–2240. doi: 10.1523/JNEUROSCI.11-07-02226.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knight D. E., Baker P. F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol. 1982;68(2):107–140. doi: 10.1007/BF01872259. [DOI] [PubMed] [Google Scholar]
  14. Krishtal O. A., Pidoplichko V. I. A receptor for protons in the nerve cell membrane. Neuroscience. 1980;5(12):2325–2327. doi: 10.1016/0306-4522(80)90149-9. [DOI] [PubMed] [Google Scholar]
  15. Krnjević K., Puil E. Halothane suppresses slow inward currents in hippocampal slices. Can J Physiol Pharmacol. 1988 Dec;66(12):1570–1575. doi: 10.1139/y88-257. [DOI] [PubMed] [Google Scholar]
  16. Llinás R., Sugimori M., Lin J. W., Cherksey B. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1689–1693. doi: 10.1073/pnas.86.5.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nishi K., Oyama Y. Accelerating effects of pentobarbitone on the inactivation process of the calcium current in Helix neurones. Br J Pharmacol. 1983 Jul;79(3):645–654. doi: 10.1111/j.1476-5381.1983.tb10001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nishi K., Oyama Y. Barbiturates increase the rate of voltage-dependent inactivation of the calcium current in snail neurones. Br J Pharmacol. 1983 Dec;80(4):761–765. doi: 10.1111/j.1476-5381.1983.tb10068.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  20. Pancrazio J. J., Park W. K., Lynch C., 3rd Inhalational anesthetic actions on voltage-gated ion currents of bovine adrenal chromaffin cells. Mol Pharmacol. 1993 May;43(5):783–794. [PubMed] [Google Scholar]
  21. Plummer M. R., Hess P. Reversible uncoupling of inactivation in N-type calcium channels. Nature. 1991 Jun 20;351(6328):657–659. doi: 10.1038/351657a0. [DOI] [PubMed] [Google Scholar]
  22. Pocock G. Ion movements in isolated bovine adrenal medullary cells treated with ouabain. Mol Pharmacol. 1983 May;23(3):681–697. [PubMed] [Google Scholar]
  23. Pocock G. Ionic and metabolic requirements for stimulation of secretion by ouabain in bovine adrenal medullary cells. Mol Pharmacol. 1983 May;23(3):671–680. [PubMed] [Google Scholar]
  24. Pocock G., Richards C. D. The action of pentobarbitone on stimulus-secretion coupling in adrenal chromaffin cells. Br J Pharmacol. 1987 Jan;90(1):71–80. doi: 10.1111/j.1476-5381.1987.tb16826.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pocock G., Richards C. D. The action of volatile anaesthetics on stimulus-secretion coupling in bovine adrenal chromaffin cells. Br J Pharmacol. 1988 Sep;95(1):209–217. doi: 10.1111/j.1476-5381.1988.tb16566.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Richards C. D., Sercombe R. Calcium, magnesium and the electrical activity of guinea-pig olfactory coex in vitro. J Physiol. 1970 Dec;211(3):571–584. doi: 10.1113/jphysiol.1970.sp009294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Terrar D. A., Victory J. G. Effects of halothane on membrane currents associated with contraction in single myocytes isolated from guinea-pig ventricle. Br J Pharmacol. 1988 Jun;94(2):500–508. doi: 10.1111/j.1476-5381.1988.tb11553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. VON EULER U. S., FLODING I. A fluorimetric micromethod for differential estimation of adrenaline and noradrenaline. Acta Physiol Scand Suppl. 1955;33(118):45–56. [PubMed] [Google Scholar]
  29. Waymire J. C., Bennett W. F., Boehme R., Hankins L., Gilmer-Waymire K., Haycock J. W. Bovine adrenal chromaffin cells: high-yield purification and viability in suspension culture. J Neurosci Methods. 1983 Apr;7(4):329–351. doi: 10.1016/0165-0270(83)90026-2. [DOI] [PubMed] [Google Scholar]
  30. Werz M. A., Macdonald R. L. Barbiturates decrease voltage-dependent calcium conductance of mouse neurons in dissociated cell culture. Mol Pharmacol. 1985 Sep;28(3):269–277. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES