Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Dec 15;481(Pt 3):743–752. doi: 10.1113/jphysiol.1994.sp020478

Spontaneous changes in arterial blood pressure and renal interstitial hydrostatic pressure in conscious rats.

S Skarlatos 1, P H Brand 1, P J Metting 1, S L Britton 1
PMCID: PMC1155915  PMID: 7707240

Abstract

1. Previous work has demonstrated a positive relationship between experimentally induced changes in arterial pressure (AP) and renal interstitial hydrostatic pressure (RIHP). The purpose of the present study was to test the hypothesis that RIHP is positively correlated with the normal changes in AP that occur spontaneously in conscious rats. 2. Rats were chronically instrumented for the recording of AP (via an aortic catheter) and RIHP. RIHP was measured by implanting a Millar microtransducer, whose tip had been encapsulated in a 35 microns pore polyethylene matrix (5 mm long, 2 mm o.d.), approximately 5 mm below the renal cortical surface. 3. A total of 56 h of simultaneous analog recording of AP and RIHP was obtained from ten rats. Each 1 h segment was digitized and evaluated at frequencies of 1, 0.1, 0.02 and 0.01 Hz. 4. In forty-nine out of fifty-six of these 1 h recordings taken at 1 Hz, there were significant positive linear correlations between AP and RIHP (mean r = 0.32) with a mean slope of 0.11 mmHg RIHP/1 mmHg AP. Low-pass filtering to 0.01 Hz significantly increased the r value to 0.48. 5. These results demonstrate that spontaneous changes in AP and RIHP are positively correlated. The spontaneous coupling of AP and RIHP may be of importance in the regulation of salt and water excretion by the pressure diuresis mechanism.

Full text

PDF
743

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper R. H., Jacob H. J., Brody M. J. Regulation of arterial pressure lability in rats with chronic sinoaortic deafferentation. Am J Physiol. 1987 Aug;253(2 Pt 2):H466–H474. doi: 10.1152/ajpheart.1987.253.2.H466. [DOI] [PubMed] [Google Scholar]
  2. Brand P. H., Coyne K. B., Kostrzewski K. A., Shier D., Metting P. J., Britton S. L. Pressure diuresis and autonomic function in conscious dogs. Am J Physiol. 1991 Oct;261(4 Pt 2):R802–R810. doi: 10.1152/ajpregu.1991.261.4.R802. [DOI] [PubMed] [Google Scholar]
  3. Burnett J. C., Jr, Knox F. G. Renal interstitial pressure and sodium excretion during renal vein constriction. Am J Physiol. 1980 Apr;238(4):F279–F282. doi: 10.1152/ajprenal.1980.238.4.F279. [DOI] [PubMed] [Google Scholar]
  4. Garcia-Estañ J., Roman R. J. Role of renal interstitial hydrostatic pressure in the pressure diuresis response. Am J Physiol. 1989 Jan;256(1 Pt 2):F63–F70. doi: 10.1152/ajprenal.1989.256.1.F63. [DOI] [PubMed] [Google Scholar]
  5. Grady H. C., Bullivant E. M. Renal blood flow varies during normal activity in conscious unrestrained rats. Am J Physiol. 1992 May;262(5 Pt 2):R926–R932. doi: 10.1152/ajpregu.1992.262.5.R926. [DOI] [PubMed] [Google Scholar]
  6. Granger J. P., Haas J. A., Pawlowska D., Knox F. G. Effect of direct increases in renal interstitial hydrostatic pressure on sodium excretion. Am J Physiol. 1988 Apr;254(4 Pt 2):F527–F532. doi: 10.1152/ajprenal.1988.254.4.F527. [DOI] [PubMed] [Google Scholar]
  7. Granger J. P. Pressure natriuresis. Role of renal interstitial hydrostatic pressure. Hypertension. 1992 Jan;19(1 Suppl):I9–17. doi: 10.1161/01.hyp.19.1_suppl.i9. [DOI] [PubMed] [Google Scholar]
  8. Granger J. P., Scott J. W. Effects of renal artery pressure on interstitial pressure and Na excretion during renal vasodilation. Am J Physiol. 1988 Nov;255(5 Pt 2):F828–F833. doi: 10.1152/ajprenal.1988.255.5.F828. [DOI] [PubMed] [Google Scholar]
  9. Guyton A. C., Coleman T. G., Cowley A. V., Jr, Scheel K. W., Manning R. D., Jr, Norman R. A., Jr Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972 May;52(5):584–594. doi: 10.1016/0002-9343(72)90050-2. [DOI] [PubMed] [Google Scholar]
  10. Guyton A. C., Coleman T. G., Granger H. J. Circulation: overall regulation. Annu Rev Physiol. 1972;34:13–46. doi: 10.1146/annurev.ph.34.030172.000305. [DOI] [PubMed] [Google Scholar]
  11. Guyton A. C. The surprising kidney-fluid mechanism for pressure control--its infinite gain! Hypertension. 1990 Dec;16(6):725–730. doi: 10.1161/01.hyp.16.6.725. [DOI] [PubMed] [Google Scholar]
  12. Haas J. A., Granger J. P., Knox F. G. Effect of renal perfusion pressure on sodium reabsorption from proximal tubules of superficial and deep nephrons. Am J Physiol. 1986 Mar;250(3 Pt 2):F425–F429. doi: 10.1152/ajprenal.1986.250.3.F425. [DOI] [PubMed] [Google Scholar]
  13. Hall J. E., Mizelle H. L., Woods L. L., Montani J. P. Pressure natriuresis and control of arterial pressure during chronic norepinephrine infusion. J Hypertens. 1988 Sep;6(9):723–731. doi: 10.1097/00004872-198809000-00006. [DOI] [PubMed] [Google Scholar]
  14. Hartupee D. A., Burnett J. C., Jr, Mertz J. I., Knox F. G. Acetylcholine-induced vasodilation without natriuresis during control of interstitial pressure. Am J Physiol. 1982 Oct;243(4):F325–F329. doi: 10.1152/ajprenal.1982.243.4.F325. [DOI] [PubMed] [Google Scholar]
  15. Khraibi A. A. Direct renal interstitial volume expansion causes exaggerated natriuresis in SHR. Am J Physiol. 1991 Oct;261(4 Pt 2):F567–F570. doi: 10.1152/ajprenal.1991.261.4.F567. [DOI] [PubMed] [Google Scholar]
  16. Khraibi A. A., Haas J. A., Knox F. G. Effect of renal perfusion pressure on renal interstitial hydrostatic pressure in rats. Am J Physiol. 1989 Jan;256(1 Pt 2):F165–F170. doi: 10.1152/ajprenal.1989.256.1.F165. [DOI] [PubMed] [Google Scholar]
  17. Khraibi A. A., Knox F. G. Effect of acute renal decapsulation on pressure natriuresis in SHR and WKY rats. Am J Physiol. 1989 Nov;257(5 Pt 2):F785–F789. doi: 10.1152/ajprenal.1989.257.5.F785. [DOI] [PubMed] [Google Scholar]
  18. Khraibi A. A., Knox F. G. Renal interstitial hydrostatic pressure during pressure natriuresis in hypertension. Am J Physiol. 1988 Nov;255(5 Pt 2):R756–R759. doi: 10.1152/ajpregu.1988.255.5.R756. [DOI] [PubMed] [Google Scholar]
  19. MILES B. E., DE WARDENER H. E. Intrarenal pressure. J Physiol. 1954 Jan;123(1):131–142. doi: 10.1113/jphysiol.1954.sp005038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MILES B. E., VENTOM M. G., DE WARDENER H. E. Observations on the mechanism of circulatory autoregulation in the perfused dog's kidney. J Physiol. 1954 Jan;123(1):143–147. doi: 10.1113/jphysiol.1954.sp005039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ott C. E., Navar L. G., Guyton A. C. Pressures in static and dynamic states from capsules implanted in the kidney. Am J Physiol. 1971 Aug;221(2):394–400. doi: 10.1152/ajplegacy.1971.221.2.394. [DOI] [PubMed] [Google Scholar]
  22. Roman R. J., Cowley A. W., Jr, Garcia-Estañ J., Lombard J. H. Pressure-diuresis in volume-expanded rats. Cortical and medullary hemodynamics. Hypertension. 1988 Aug;12(2):168–176. doi: 10.1161/01.hyp.12.2.168. [DOI] [PubMed] [Google Scholar]
  23. Roman R. J., Lianos E. Influence of prostaglandins on papillary blood flow and pressure-natriuretic response. Hypertension. 1990 Jan;15(1):29–35. doi: 10.1161/01.hyp.15.1.29. [DOI] [PubMed] [Google Scholar]
  24. Roman R. J. Pressure-diuresis in volume-expanded rats. Tubular reabsorption in superficial and deep nephrons. Hypertension. 1988 Aug;12(2):177–183. doi: 10.1161/01.hyp.12.2.177. [DOI] [PubMed] [Google Scholar]
  25. Romero J. C., Knox F. G. Mechanisms underlying pressure-related natriuresis: the role of the renin-angiotensin and prostaglandin systems. State of the art lecture. Hypertension. 1988 Jun;11(6 Pt 2):724–738. doi: 10.1161/01.hyp.11.6.724. [DOI] [PubMed] [Google Scholar]
  26. SELKURT E. E., HALL P. W., SPENCER M. P. Influence of graded arterial pressure decrement on renal clearance of creatinine, p-aminohippurate and sodium. Am J Physiol. 1949 Nov;159(2):369–378. doi: 10.1152/ajplegacy.1949.159.2.369. [DOI] [PubMed] [Google Scholar]
  27. Selén G., Persson A. E. Hydrostatic and oncotic pressures in the interstitium of dehydrated and volume expanded rats. Acta Physiol Scand. 1983 Jan;117(1):75–81. doi: 10.1111/j.1748-1716.1983.tb07180.x. [DOI] [PubMed] [Google Scholar]
  28. Skarlatos S., DiPaola N., Frankel R. A., Pomerantz R. W., Brand P. H., Metting P. J., Britton S. L. Spontaneous pressure-flow relationships in renal circulation of conscious dogs. Am J Physiol. 1993 May;264(5 Pt 2):H1517–H1527. doi: 10.1152/ajpheart.1993.264.5.H1517. [DOI] [PubMed] [Google Scholar]
  29. Skarlatos S., Metting P. J., Britton S. L. Spontaneous pressure-flow patterns in the kidney of conscious rats. Am J Physiol. 1993 Dec;265(6 Pt 2):H2151–H2159. doi: 10.1152/ajpheart.1993.265.6.H2151. [DOI] [PubMed] [Google Scholar]
  30. Steele J. E., Brand P. H., Metting P. J., Britton S. L. Dynamic, short-term coupling between changes in arterial pressure and urine flow. Am J Physiol. 1993 Nov;265(5 Pt 2):F717–F722. doi: 10.1152/ajprenal.1993.265.5.F717. [DOI] [PubMed] [Google Scholar]
  31. THOMPSON D. D., PITTS R. F. Effects of alterations of renal arterial pressure on sodium and water excretion. Am J Physiol. 1952 Feb;168(2):490–499. doi: 10.1152/ajplegacy.1952.168.2.490. [DOI] [PubMed] [Google Scholar]
  32. TOBIAN L., COFFEE K., FERREIRA D., MEULI J. THE EFFECT OF RENAL PERFUSION PRESSURE ON THE NET TRANSPORT OF SODIUM OUT OF DISTAL TUBULAR URINE AS STUDIED WITH THE STOP-FLOW TECHNIQUE. J Clin Invest. 1964 Jan;43:118–128. doi: 10.1172/JCI104886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Trapani A. J., Barron K. W., Brody M. J. Analysis of hemodynamic variability after sinoaortic denervation in the conscious rat. Am J Physiol. 1986 Dec;251(6 Pt 2):R1163–R1169. doi: 10.1152/ajpregu.1986.251.6.R1163. [DOI] [PubMed] [Google Scholar]
  34. Walker L. A., Buscemi-Bergin M., Gellai M. Renal hemodynamics in conscious rats: effects of anesthesia, surgery, and recovery. Am J Physiol. 1983 Jul;245(1):F67–F74. doi: 10.1152/ajprenal.1983.245.1.F67. [DOI] [PubMed] [Google Scholar]
  35. Wilcox C. S., Sterzel R. B., Dunckel P. T., Mohrmann M., Perfetto M. Renal interstitial pressure and sodium excretion during hilar lymphatic ligation. Am J Physiol. 1984 Aug;247(2 Pt 2):F344–F351. doi: 10.1152/ajprenal.1984.247.2.F344. [DOI] [PubMed] [Google Scholar]
  36. deBoer R. W., Karemaker J. M., Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol. 1987 Sep;253(3 Pt 2):H680–H689. doi: 10.1152/ajpheart.1987.253.3.H680. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES