Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Dec 15;481(Pt 3):753–759. doi: 10.1113/jphysiol.1994.sp020479

Somatosensory regulation of renal function in the stroke-prone spontaneously hypertensive rat.

G Davis 1, E J Johns 1
PMCID: PMC1155916  PMID: 7707241

Abstract

1. Chloralose-urethane-anaesthetized Wistar rats and stroke-prone spontaneously hypertensive rats (SHRSP) were prepared for measuring renal function. 2. Bilateral brachial nerve stimulation for 15 min, at 1.3 Hz (15 V, 0.2 ms), increased blood pressure from 119 +/- 2 to 151 +/- 6 mmHg (P < 0.01) in Wistar rats and from 181 +/- 6 to 203 +/- 6 mmHg (P < 0.05) in SHRSP; renal perfusion pressure was mechanically regulated at prestimulus levels but renal blood flow (4.1 +/- 0.7 ml min-1 g-1 in Wistar rats and 3.4 +/- 0.3 ml min-1 g-1 in SHRSP) and glomerular filtration rate (1.18 +/- 0.09 ml min-1 g-1 in Wistar rats and 0.88 +/- 0.01 ml min-1 g-1 in SHRSP) decreased between 5 and 30% (P < 0.05-0.001). 3. During brachial nerve stimulation, urine flow (13.8 +/- 2.2 microliters min-1 g-1) and absolute and fractional sodium excretion (3.70 +/- 0.64 mumol min-1 g-1 and 2.06 +/- 0.23%) decreased by 60-70% in the Wistar rats (P < 0.01-0.001) and the responses were unaffected by vagotomy or carotid sinus denervation. In the SHRSP, urine flow rate (9.74 +/- 2.52 microliters min-1 g-1) and absolute and fractional sodium excretion (1.98 +/- 0.59 mumol min-1 g-1 and 1.41 +/- 0.28%) decreased by 15-30% (P < 0.05-0.01), decreases which were significantly (P < 0.05) smaller than those observed in the Wistar rats. Moreover, the responses were some 40-60% larger in the vagotomized and carotid sinus-denervated SHRSP. 4. The influence of vagal and carotid sinus afferent nerves on the somatosensory-induced renal responses in the Wistar rats was small, whereas in the SHRSP they appeared to exert a marked tonic inhibitory effect. It is concluded that there is excessive baroreceptor restraint on neural regulation of renal function in the SHRSP.

Full text

PDF
753

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andresen M. C., Kuraoka S., Brown A. M. Baroreceptor function and changes in strain sensitivity in normotensive and spontaneously hypertensive rats. Circ Res. 1980 Dec;47(6):821–828. doi: 10.1161/01.res.47.6.821. [DOI] [PubMed] [Google Scholar]
  2. Clement D. L., Pelletier C. L., Shepherd J. T. Role of vagal afferents in the control of renal sympathetic nerve activity in the rabbit. Circ Res. 1972 Dec;31(6):824–830. doi: 10.1161/01.res.31.6.824. [DOI] [PubMed] [Google Scholar]
  3. Coote J. H., Westbury D. R. Proceedings: The influence of the carotid sinus baroreceptors on activity in single sympathetic preganglionic neurones. J Physiol. 1974 Aug;241(1):22P–23P. [PubMed] [Google Scholar]
  4. Davis G., Johns E. J. Baroreceptor and somatic sensory regulation of kidney function in two-kidney, one-clip Goldblatt hypertensive rats. J Physiol. 1994 Apr 1;476(1):167–176. [PMC free article] [PubMed] [Google Scholar]
  5. Davis G., Johns E. J. Effect of somatic nerve stimulation on the kidney in intact, vagotomized and carotid sinus-denervated rats. J Physiol. 1991 Jan;432:573–584. doi: 10.1113/jphysiol.1991.sp018401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DiBona G. F., Johns E. J. A study of the role of renal nerves in the renal responses to 60 degree head-up tilt in the anaesthetized dog. J Physiol. 1980 Feb;299:117–126. doi: 10.1113/jphysiol.1980.sp013114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Esler M., Jennings G., Korner P., Willett I., Dudley F., Hasking G., Anderson W., Lambert G. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988 Jan;11(1):3–20. doi: 10.1161/01.hyp.11.1.3. [DOI] [PubMed] [Google Scholar]
  8. Gonzalez E. R., Krieger A. J., Sapru H. N. Central resetting of baroreflex in the spontaneously hypertensive rat. Hypertension. 1983 May-Jun;5(3):346–352. doi: 10.1161/01.hyp.5.3.346. [DOI] [PubMed] [Google Scholar]
  9. Handa R. K., Johns E. J. A study of the renal responses in the rat to electrical stimulation of the afferent nerves of the brachial plexus. Q J Exp Physiol. 1988 Nov;73(6):915–929. doi: 10.1113/expphysiol.1988.sp003226. [DOI] [PubMed] [Google Scholar]
  10. Hollenberg N. K., Adams D. F., Solomon H., Chenitz W. R., Burger B. M., Abrams H. L., Merrill J. P. Renal vascular tone in essential and secondary hypertension: hemodynamic and angiographic responses to vasodilators. Medicine (Baltimore) 1975 Jan;54(1):29–44. doi: 10.1097/00005792-197501000-00002. [DOI] [PubMed] [Google Scholar]
  11. Honig A. Peripheral arterial chemoreceptors and reflex control of sodium and water homeostasis. Am J Physiol. 1989 Dec;257(6 Pt 2):R1282–R1302. doi: 10.1152/ajpregu.1989.257.6.R1282. [DOI] [PubMed] [Google Scholar]
  12. Johns E. J., Lewis B. A., Singer B. The sodium-retaining effect of renal nerve activity in the cat: role of angiotensin formation. Clin Sci Mol Med. 1976 Jul;51(1):93–102. doi: 10.1042/cs0510093. [DOI] [PubMed] [Google Scholar]
  13. Karim F., Poucher S. M., Summerill R. A. The reflex effects of changes in carotid sinus pressure upon renal function in dogs. J Physiol. 1984 Oct;355:557–566. doi: 10.1113/jphysiol.1984.sp015438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kidd C., Ledsome J. R., Linden R. J. The effect of distension of the pulmonary vein-atrial junction on activity of left atrial receptors. J Physiol. 1978 Dec;285:445–453. doi: 10.1113/jphysiol.1978.sp012581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koepke J. P. Effect of environmental stress on neural control of renal function. Miner Electrolyte Metab. 1989;15(1-2):83–87. [PubMed] [Google Scholar]
  16. Kopp U. C., Olson L. A., DiBona G. F. Renorenal reflex responses to mechano- and chemoreceptor stimulation in the dog and rat. Am J Physiol. 1984 Jan;246(1 Pt 2):F67–F77. doi: 10.1152/ajprenal.1984.246.1.F67. [DOI] [PubMed] [Google Scholar]
  17. Kopp U. C., Smith L. A. Renorenal reflexes present in young and captopril-treated adult spontaneously hypertensive rats. Hypertension. 1989 May;13(5):430–439. doi: 10.1161/01.hyp.13.5.430. [DOI] [PubMed] [Google Scholar]
  18. Luft F. C., Demmert G., Rohmeiss P., Unger T. Baroreceptor reflex effect on sympathetic nerve activity in stroke-prone spontaneously hypertensive rats. J Auton Nerv Syst. 1986 Nov;17(3):199–209. doi: 10.1016/0165-1838(86)90057-3. [DOI] [PubMed] [Google Scholar]
  19. Lundin S., Thorén P. Renal function and sympathetic activity during mental stress in normotensive and spontaneously hypertensive rats. Acta Physiol Scand. 1982 May;115(1):115–124. doi: 10.1111/j.1748-1716.1982.tb07053.x. [DOI] [PubMed] [Google Scholar]
  20. Marshall J. M. Analysis of cardiovascular responses evoked following changes in peripheral chemoreceptor activity in the rat. J Physiol. 1987 Dec;394:393–414. doi: 10.1113/jphysiol.1987.sp016877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nosaka S., Wang S. C. Carotid sinus baroceptor functions in the spontaneously hypertensive rat. Am J Physiol. 1972 May;222(5):1079–1084. doi: 10.1152/ajplegacy.1972.222.5.1079. [DOI] [PubMed] [Google Scholar]
  22. Prosnitz E. H., DiBona G. F. Effect of decreased renal sympathetic nerve activity on renal tubular sodium reabsorption. Am J Physiol. 1978 Dec;235(6):F557–F563. doi: 10.1152/ajprenal.1978.235.6.F557. [DOI] [PubMed] [Google Scholar]
  23. Ricksten S. E., Thoren P. Reflex inhibition of sympathetic activity during volume load in awake normotensive and spontaneously hypertensive rats. Acta Physiol Scand. 1980 Sep;110(1):77–82. doi: 10.1111/j.1748-1716.1980.tb06632.x. [DOI] [PubMed] [Google Scholar]
  24. Ricksten S. E., Yao T., Thorén P. Peripheral and central vascular compliances in conscious normotensive and spontaneously hypertensive rats. Acta Physiol Scand. 1981 Jun;112(2):169–177. doi: 10.1111/j.1748-1716.1981.tb06801.x. [DOI] [PubMed] [Google Scholar]
  25. Thorén P., Mark A. L., Morgan D. A., O'Neill T. P., Needleman P., Brody M. J. Activation of vagal depressor reflexes by atriopeptins inhibits renal sympathetic nerve activity. Am J Physiol. 1986 Dec;251(6 Pt 2):H1252–H1259. doi: 10.1152/ajpheart.1986.251.6.H1252. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES