Abstract
1. Carnosine, anserine, and homocarnosine are endogenous dipeptides concentrated in brain and muscle whose biological functions remain in doubt.
2. We have tested the hypothesis that these compounds function as endogenous protective substances against molecular and cellular damage from free radicals, using two isolated enzyme systems and two models of ischemic brain injury. Carnosine and homocarnosine are both effective in activating brain Na, K-ATPase measured under optimal conditions and in reducing the loss of its activity caused by incubation with hydrogen peroxide.
3. In contrast, all three endogenous dipeptides cause a reduction in the activity of brain tyrosine hydroxylase, an enzyme activated by free radicals. In hippocampal brain slices subjected to ischemia, carnosine increased the time to loss of excitability.
4. In in vivo experiments on rats under experimental hypobaric hypoxia, carnosine increased the time to loss of ability to stand and breath and decreased the time to recovery.
5. These actions are explicable by effects of carnosine and related compounds which neutralize free radicals, particularly hydroxyl radicals. In all experiments the effective concentration of carnosine was comparable to or lower than those found in brain. These observations provide further support for the conclusion that protection against free radical damage is a major role of carnosine, anserine, and homocarnosine.
Keywords: homocarnosine; carnosine; anserine; brain; ischemia; Na, K-ATPase; tyrosine hydroxylase
REFERENCES
- Aminoff, M. J. (1994). Treatment of Parkinson's disease. West J. Med.161:303–308. [PMC free article] [PubMed] [Google Scholar]
- Aruoma, O. I., Laughton, M. J., and Halliwell, B. (1989). Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem. J.264:863–869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ayling, J. A., and Bailey, S. W. (1983). Activation of molecular oxygen by tetrahydropterine monooxygenases. In Chemistry and Biology of Pterines (J. A. Blair, Ed.), Walter de Gruyter, Berlin-New York, pp. 363–367. [Google Scholar]
- Beriozovsky, V. A., Boiko, K. A., and Klimenko, K. S. (1978). Hypoxia and Individual Features of Reactivity, Kiev, (in Russian).
- Berkowitcz, D. A., Tromley, P. Q., and Shepherd, G. M. (1994). Evidence for glutamate as the olfactory receptor cell neurotransmitter. J. Neurophysiol.71:2557–2561. [DOI] [PubMed] [Google Scholar]
- Biffo, S., deLucia, R., Mulatero, B., Margolis, F., and Fasolo, A. (1990). Carnosine-, calcitonin gene-related peptide-and tyrosine-hydroxylase-immunoreactivity in the mouse olfactory bulb following peripheral denervation. Brain Res.528:353–357. [DOI] [PubMed] [Google Scholar]
- Boldyrev, A. A. (1990). Retrospectives and perspectives on the biological activity of histidine containing dipeptides. Int. J. Biochem.22:129–132. [DOI] [PubMed] [Google Scholar]
- Boldyrev, A. A. (1994). Carnosine and free radical defense mechanism. Trends Neurosci.17:468. [DOI] [PubMed] [Google Scholar]
- Boldyrev, A. A., and Severin, S. E. (1990). The histidine containing dipeptides, carnosine and anserine: Distribution, properties and biological significance. In Advances in Enzyme Regulation, Vol. 30 (G. Weber, Ed.), Pergamon Press, London, pp. 175–194. [DOI] [PubMed] [Google Scholar]
- Boldyrev, A. A., Dupin, A. M., Pindel, E. V., and Severin, S. E. (1988). Antioxidative properties of histidine-containing dipeptides from skeletal muslces of vertebrates. Comp. Biochem. Physiol.8BP:245–250. [DOI] [PubMed] [Google Scholar]
- Boldyrev, A. A., Kurella, E. G., Rubtsov, A. M., Tyulina, O. V., Shara, M., and Shjentjurc, M. (1992). Direct evidence for interaction of carnosine and related compounds with free oxygen species. Biokhimiya57:1360–1365 (in Russian).1334707 [Google Scholar]
- Boldyrev, A. A., Kurella, E. G., and Stvolinsky, S. L. (1994). Biological role of carnosine metabolism in excitable tissues: speculations and facts (a commentary). Pathophysiology1:215–219. [Google Scholar]
- Boldyrev, A. A., Kurella, E. G., and Tyulina, O. V. (1995a). Oxidative stability of brain Na, K-ATPase. Proc. Russ. Acad. Sci.342:546–548 (in Russian). [PubMed] [Google Scholar]
- Boldyrev, A., Abe, H., Stvolinsky, S., and Tyulina, O. (1995b). Effects of carnosine and related compounds on generation of free oxygen species: a comparative study. Comp. Biochem. Physiol.112B:481–485. [DOI] [PubMed] [Google Scholar]
- Chan, K. M., and Decker, E. A. (1994). Endogenous skeletal muscle antioxidants. Crit. Rev. Food Sci. Nutr.334:403–426. [DOI] [PubMed] [Google Scholar]
- Chasovnikova, L. V., Formazyuk, V. E., Sergienko, V. I., Boldyrev, A. A., and Severin, S. E. (1990). The antioxidative properties of carnosine and other drugs. Biochem. Int.20:1097–1103. [PubMed] [Google Scholar]
- Chiueh, C. C., Wu, R. M., Mohanakumar, K. P., Sternberger, L. M., Krishna, G., Obata, T., and Murphy, D. L. (1994). In vivo generation of hydroxyl radicals and MPTP-induced dopaminergic toxicity in the basal ganglia. N.Y. Acad. Sci.738:25–36. [DOI] [PubMed] [Google Scholar]
- Crush, K. G. (1970). Carnosine and related substances in animal tissues. Comp. Biochem. Physiol.34:3–10. [DOI] [PubMed] [Google Scholar]
- Czyzyk-Krzeska, M. F., Bayliss, D. A., Lawson, E. E., and Millhorn, D. E. (1992). Regulation of tyrosine hydroxylase gene expression in the rat carotid body by hypoxia. J. Neurochem.28:1538–1546. [DOI] [PubMed] [Google Scholar]
- Davis, M. D., and Kaufman, S. (1991). Studies on the partial uncoupled oxidation of tetrahydropterins by phenylalanine hydroxylase. Neurochem. Res.16, 813–819. [DOI] [PubMed] [Google Scholar]
- Fillenz, M. (1993). Short-term control of transmitter synthesis in central catecholamineric neurons. Prog. Biophyss. Mol. Biol.60:29–46. [DOI] [PubMed] [Google Scholar]
- Gulyaeva, N. V., Dupin, A. M., Levshina, I. P., Obidin, A. B., and Boldyrev, A. A. (1989). Carnosine prevents activation of free-radical lipid oxidation during stress. Buyl. Exp. Biol. Med.107:148–151 (in Russian). [PubMed] [Google Scholar]
- Hastings, T. G. (1995). Enzymatic oxidation of dopamine: The role of prostaglandin H synthase. J. Neurochem.64:919–924. [DOI] [PubMed] [Google Scholar]
- Hirsh, E. C., Graybiel, A. M. and Adid, Y. (1988). Melanized dopaminergic neurons are differently affected in Parkinson disease. Nature334:345–348. [DOI] [PubMed] [Google Scholar]
- Hori, N., and Carpenter, D. O. (1994). Functional and morphological changes induced by transient in vivo ischemia. Exp. Neurol.129:279–289. [DOI] [PubMed] [Google Scholar]
- Hori, N., Akaike, N., and Carpenter, D. O. (1988). Piriform cortex brain slices: Techniques for isolation of synaptic inputs. J. Neurosci. Meth.25:197–208. [DOI] [PubMed] [Google Scholar]
- Hori, N., Doi, N., Miyahara, S., Shinoda, Y., and Carpenter, D. O. (1991). Appearance of NMDA-receptors triggered by anoxia independent of voltage in vivo and in vitro. Exp. Neurol.112:304–311. [DOI] [PubMed] [Google Scholar]
- Huang, W.-H., Wang, Y., and Askari, A. (1992). Na,K-ATPase: Inactivation and degradation induced by oxygen radicals. Int. J. Biochem.24:621–626. [DOI] [PubMed] [Google Scholar]
- Huang, W., Wang, Y., Askari, A., Zolotarjeva, N., and Ganjezadeh, M. (1994). Different sensitivities of the Na,K-ATPase isoforms to oxidants. Biochim. Biophys. Acta1190:108–114. [DOI] [PubMed] [Google Scholar]
- Ikeda, Y., Anderson, J. H., and Long, D. M. (1989). Oxygen free radicals in the genesis of traumatic and peritumoral brain edema. Neurosurgery24:679–685. [DOI] [PubMed] [Google Scholar]
- Javoy-Adid, F. (1992). Dopaminergic cell death in Parkinson disease. In Free Radicals in the Brain: Aging, neurological and mental disorders. Packer, L., Prilipko, L., and Christen, Y. (eds.), Springer-Verlag, pp. 99–108.
- Kako, K., Kato, M., Matsuoka, T., and Mustapha, A. (1988). Depression of membrane-bound Na,K-ATPase activity induced by free radicals and by ischemia of kidney. Am. J. Physiol.254:C330–C337. [DOI] [PubMed] [Google Scholar]
- Kaufman, S. (1986). The metabolic role of tetrahydropterine. In Chemistry and Biology of Pterines (B. A. Copper and V. M. Whithead, Eds.), Walter de Gruyter, Berlin-New York, pp. 185–200. [Google Scholar]
- Kaufman, S. (1993). The phenylalanine hydroxylating system. Adv. Enzymol. Relat. Area Mol. Biol.67:77–264. [DOI] [PubMed] [Google Scholar]
- Kish, S. J., Perry, T. L., and Hansen, S. (1979). Regional distribution of homocarnosine, homocarnosine-carnosine synthetase and homocarnosinase in human brain. J. Neurochem.32:1629–1636. [DOI] [PubMed] [Google Scholar]
- Kitagawa, K., Matsumoto, M., Oda, T., Niinobe, M., Hata, R., Handa, N., Fukunaga, R., Isaka, Y. Kimura, K., Maeda, H., Mikoshiba, K., and Kamada, T. (1990). Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death. Neuroscience3:551–558. [DOI] [PubMed] [Google Scholar]
- Klodos, I., Ottolenghi, P., and Boldyrev, A. (1975). Large-scale preparation of Na,K-ATPase from ox brain gray matter. Anal. Biochem.67:397–403. [DOI] [PubMed] [Google Scholar]
- Kohen, R., Yamamoto, J., Cundy, K. C., and Ames, B. (1988). Antioxidant activity of carnosine, homocarnosine and anserine present in muscles and brain. Proc. Natl. Acad. Sci. USA85:317–3179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kukreja, R. C., Weaver, A. B., and Hess, M. L. (1990). Sarcolemmal Na,K-ATPase: Inactivation by neutrophil-derived free radicals and oxidants. Am. J. Physiol.259:H1330–H1336. [DOI] [PubMed] [Google Scholar]
- Le, C. T., Hollaar, L., Vandervalk, E. J. M., and Vanderlaarse, A. (1994). Desferrioxamine protects myocytes against peroxide-induced damage without affecting glutathione redox cycle turnover. J. Mol. Cell. Cardinol.26:877–887. [DOI] [PubMed] [Google Scholar]
- Margolis, F. L. (1974). Carnosine in the primary olfactory bulb. Science184:909–911. [DOI] [PubMed] [Google Scholar]
- Margolis, F. L., and Grillo, M. (1984). Carnosine, homocarnosine and anserine in vertebrate retinas. Neurochem. Int.6:207–209. [DOI] [PubMed] [Google Scholar]
- Mineeva, M. F., and Stvolinsky, S. L. (1995). Effect of histidine containing dipeptides on brain tyrosine hydroxylase. Byul. Exp. Biol. Med.121:382–384. (In Russian). [PubMed] [Google Scholar]
- Mintorovitch, J., Yang, G. Y., Shimizu, H., Kucharcky, J., Chan, P. H., and Weinsterin, P. R. (1994). Diffusion-weighted magnetic resonance imaging of acute focal ischemia: Comparison of signal intensity with changes in brain water and Na,K-ATPase activity. J. Cerebr. Blood. Flow Metab.14:332–336. [DOI] [PubMed] [Google Scholar]
- Nappi, A. J., and Vass, E. (1994). The effect of glutathione and ascorbic acid on the oxidations of 6-hydroxydopa and 6-hydroxydopamine. Biochim. Biophys. Acta1201:498–504. [DOI] [PubMed] [Google Scholar]
- Ng, R. H., and Marshall, F. D. (1978). Regional and subcellular distribution of homocarnosine-carnosine-synthetase in the nervous system of rats. J. Neurochem.30:187–190. [DOI] [PubMed] [Google Scholar]
- Ogawa, N., and Mori, A. (1995). Parkinson's disease, dopamine and free radicals. In Oxidative stress and aging. R. G. Cutler, L. Packer, J. Bertram, and A. Mori (eds.), Birkhauser Verlag, Boston, pp. 303–308. [Google Scholar]
- Olanow, C. W. (1993). A radical hypothesis for neurodegeneration. Trends Neurosci.16:439–444. [DOI] [PubMed] [Google Scholar]
- Palmer, C., Roberts, R. L., and Bero, C. (1994). Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke25:1039–1045. [DOI] [PubMed] [Google Scholar]
- Rebrova, O. Y., Suslina, Z. A., and Boldyrev, A. (1994). In vitro antioxidant activity of natural carnosine-related compounds. J. Neurochem.63:92. [Google Scholar]
- Ryasina, T. V., Koshelev, V. B., Krushinsky, A. L., Lozhnikova, S. M., and Lyudkovskaya, I. G. (1988). The role of short-term hypobaric hypoxia in prevention of disorders of the cerebral circulation in rats during acoustic stress. Brain Res.471:153–156. [DOI] [PubMed] [Google Scholar]
- Sakai, M., and Nagatsu, I. (1993). Alteration of carnosine expression in olfactory system of mouse after unilateral naris closure and partial bulbectomy. J. Neurosci. Res.34:648–653. [DOI] [PubMed] [Google Scholar]
- Sassoe-Pognetto, M., Cantino, D., Panzanelli, P., Verdun-di-Cantogno, L., Giustetto, M., Margolis, F. L., de Biasi, S., and Fasolo, A. (1993). Presynaptic co-localization of carnosine and glutamate in olfactory neurons. NeuroReport5:7–10. [DOI] [PubMed] [Google Scholar]
- Shiman, R., Akino, M., and Kaufman, S. (1971). Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J. Biol. Chem.246:1330–1336. [PubMed] [Google Scholar]
- Smith, M. A., Sayre, L. M., Monnier, V. M., and Perry, G. (1995). Radical ageing in Alzheimer's disease. Trends Neurosci.18:172–176. [DOI] [PubMed] [Google Scholar]
- Xie, Z., Jack-Hays, M., Wang, Y., Periyasamy, S. M., Blanco, G., Huang, W.-H., and Askari, A. (1995). Different oxidant sensitivity of the alpha1 and alpha2 isoforms of Na/K-ATPase expressed in baculovirus-infected insect cells. Biochim. Biophys. Res. Commun.207:155–159. [DOI] [PubMed] [Google Scholar]
- Yoshikawa, T., Naito, T., Tanigawa, T., Yoneta, T., and Kondo, M. (1991). Effect of zinc-carnosine-chelate compound (Z-103) on burn-induced gastric-mucosal injury in rats. Biochim. Biophys. Acta1115:15–22. [DOI] [PubMed] [Google Scholar]
- Zhang, J., and Piantadosi, C. A. (1994). Prolonged production of hydroxyl radical in rat hippocampus after brain ischemia-reperfusion is decreased by 21-aminosteroids. Neurosci. Lett.177:127–130. [DOI] [PubMed] [Google Scholar]