Abstract
目的
总结3D打印定制假体设计制造、性能及其在髋关节翻修髋臼重建应用中的研究进展。
方法
在中国知网、万方数据库、PubMed等中、英文数据库以“3D打印定制假体”、“髋关节翻修”、“髋臼骨缺损”、“髋臼重建”以及“3D printed customized prosthesis”、“revision hip arthroplasty”、“ acetabular bone defect”、“ acetabular reconstruction”为关键词,检索2013年1月—2024年5月有关3D打印定制假体及其在髋关节翻修髋臼重建应用的相关文献34 271篇,经阅读文献题目、摘要或全文,筛除不符合内容、重复、质量较低、证据等级不高的文献,最终纳入文献共48篇,对其进行分析、总结。
结果
3D打印定制假体的骨长入、力学性能优于非3D打印定制假体,进一步解决了“应力屏蔽”导致的植入物与天然骨之间弹性模量不匹配的问题;其多孔结构和表面抗菌涂层有良好的抑菌作用;可以完全匹配患者个体化髋臼解剖特点和缺损类型,从而提高髋臼重建的精准性并减少手术时间和创伤。
结论
3D打印定制假体可以精准、高效地实现髋关节翻修髋臼个体化重建,获得良好的早中期临床疗效;但是有待进一步优化生产工艺和流程,以提高临床应用的效率和远期疗效。
Keywords: 髋关节翻修, 髋臼骨缺损, 髋臼重建, 3D打印定制假体
Abstract
Objective
To review research progress on the design, manufacturing, and clinical application of three-dimensional (3D) printed customized prosthesis in acetabular reconstruction of hip revision surgery.
Methods
The related research literature on 3D printed customized prosthesis and its application in acetabular reconstruction of hip revision surgery was searched by key words of “3D printed customized prosthesis”, “revision hip arthroplasty”, “acetabular bone defect”, and “acetabular reconstruction” between January 2013 and May 2024 in Chinese and English databases, such as CNKI, Wanfang database, PubMed, etc. A total of 34 271 articles were included. After reading the literature titles, abstracts, or full texts, the literature of unrelated, repetitive, low-quality, and low evidence level was screened out, and a total of 48 articles were finally included for analysis and summary.
Results
The bone growth and mechanical properties of 3D printed customized prosthesis materials are better than those of non-3D printed customized prosthesis, which further solves the problem of elastic modulus mismatch between the implant and natural bone caused by “stress shielding”; the porous structure and antibacterial coating on the surface of 3D printed customized prosthesis have good anti-bacterial effect. 3D printed customized prosthesis can perfectly match the patient’s individual acetabular anatomical characteristics and defect type, thus improving the accuracy of acetabular reconstruction and reducing the surgical time and trauma.
Conclusion
3D printed customized prosthesis can be used for precise and efficient individualized acetabular reconstruction in hip revision surgery with good early- and mid-term effectiveness. More optimized production technics and procedures need to be developed to improve the efficiency of clinical application and long-term effectiveness.
Keywords: Hip revision, acetabular bone defect, acetabular reconstruction, three-dimensional printed customized prosthesis
人工全髋关节置换术(total hip arthroplasty,THA)是治疗终末期髋关节疾病的有效方法,可缓解疼痛并恢复髋关节功能[1]。随着人口老龄化加剧,初次THA手术量呈持续增长趋势,髋关节翻修数量也相应增加。与初次THA相比,髋关节翻修术常面临复杂的骨缺损和大量软组织瘢痕的问题,尤其是髋臼侧,手术操作复杂、手术时间长、术中出血多、术后并发症多,而且手术效果远不如初次THA。髋关节翻修术中,如何实现髋臼骨缺损精准修复和髋臼解剖重建是临床面临的难题和挑战。近年来数字医学快速发展,采用3D打印技术定制假体已能实现精准重建关节解剖形态目标,临床应用获得了满意近期疗效,具有良好临床应用前景。
本文以“3D打印定制假体”、“髋关节翻修”、“髋臼骨缺损”、“髋臼重建”以及“3D printed customized prosthesis”、“revision hip arthroplasty”、“acetabular bone defect”、“acetabular reconstruction”等关键词,在中国知网、万方数据库、PubMed等数据库检索2013年1月—2024年5月有关3D打印定制假体及其在髋关节翻修髋臼重建中应用的相关文献34 271篇,经阅读文献题目、摘要或全文,筛除不符合内容、质量较低、重复、证据等级不高的文献,最终纳入文献共48篇。现对纳入文献进行归纳分析,旨在为研发3D打印定制假体及其在髋关节翻修中的应用提供参考。
1. 3D打印定制假体研究
1.1. 假体设计和制造
3D打印技术具有精确控制形状和结构的优势,从而更好地满足个体化需求[2-6]。而3D打印定制假体则是利用数字医学技术进行个性化设计,应用3D打印技术制备具有特定形状、尺寸和功能的假体,以替代人体器官或部位。假体制造基本流程:将患者特定部位扫描数据生成数字化模型,在模型上设计和优化假体,根据患者个体和医疗需求进行优化,确保假体适配性,将数字假体模型转化为可供3D打印的文件格式导入3D打印机中,选取合适材料逐层打印假体,最后根据患者特定需求进行适配和后处理[7]。
1.2. 假体材料性能
3D打印定制假体的材料在医学应用中至关重要,既要达到临床应用标准,又要满足个体化需求。在选择材料时,需要考虑材料的力学性能、生物相容性、3D打印兼容性以及临床可行性等因素。随着3D打印技术的不断发展,新材料也在不断涌现,为定制假体提供了更多选择。
1.2.1. 骨长入性能
3D打印技术允许根据患者的骨骼形状和尺寸定制假体,这种个性化设计可以更好地适配患者骨骼结构,从而提高骨长入效果。Dall’Ava 等[8]对髋关节翻修中取出的髋臼假体骨长入进行研究,结果表明3D打印多孔钛合金髋臼假体骨长入面积、长入程度及深度均明显优于传统假体,直接证明了3D 打印定制假体骨整合的优势。
3D打印定制假体常用材料有钛合金、钽金属、生物陶瓷及生物可降解复合材料等。其中,钛合金具有良好生物相容性、耐腐蚀性能及高强度。多孔结构钛合金进一步解决了“应力屏蔽”导致的植入物与天然骨之间弹性模量不匹配的问题[9],研究表明其孔径为500~800 μm、孔隙率为70%~90%时具有最强的骨长入性能[10]。Zhang等[11]认为钛合金植入物具有生物惰性表面,难以充分诱导骨长入,因此需要进行表面修饰。Chen等[12]通过CaO-MgO-SiO 玻璃陶瓷涂层修饰Ti6Al4V支架,结果显示支架生物相容性改善,有利于BMSCs在其表面黏附和生长。Klasan等[13]对48例接受3D打印钛合金髋臼假体THA患者,于术后6周及6、12、24个月采用双能X线测量骨密度,观察DeLee-Charnley 3个髋臼分区骨密度及骨重塑变化。结果显示3D打印钛合金髋臼假体周围骨密度与健侧髋关节相比无显著差异,提示该假体具有优越骨整合能力。Sheng等[14]将海藻酸钠和VEGF引入矿化胶原蛋白中,进一步将该胶原蛋白填充至3D 打印钛合金支架孔隙中,形成新的有机-无机生物活性界面,促进骨和血管再生。
钽金属具有稳定的理化性能、优异的生物相容性和与天然骨相似的弹性模量,钽涂层或钽颗粒可以改善材料生物活性并促进骨长入[15]。Wang等[16]采用磁控溅射在3D打印的Ti6Al4V支架上沉积钽涂层,结果显示该涂层通过影响细胞增殖、黏附以及细胞间和细胞材料间的信号传导,促进支架表面骨长入。García-Robledo等[17]的研究合成了一种钽金属复合多糖支架,相对于钛金属复合多糖支架,具有更强的诱导MSCs分化为成骨细胞的能力。多孔钽金属弹性模量接近正常人骨组织,有利于降低应力屏蔽效应;具有高孔隙率,有利于细胞黏附、增殖、营养交换、骨诱导蛋白的流入和血管形成,从而促进骨长入。
1.2.2. 抗感染性能
3D打印定制假体的多孔结构有利于细菌黏附、定植、沉积,细菌感染会延迟假体表面骨长入,甚至导致假体松动和骨感染,因此抗菌性能对于假体骨长入至关重要。Maimaiti等[18]在钛合金表面构建了具有生物活性、抗菌性以及血管生成、骨诱导功能的聚吡咯,具有作为羟基磷灰石纳米颗粒和氧化锌纳米颗粒双重调节剂的功能,可诱导BMSCs黏附、增殖、分化,并对大肠杆菌和金黄色葡萄球菌有良好的抑菌作用。Li等[19]在多孔钛合金表面构建咪唑离子液体涂层,实现假体近红外触发的光热杀菌活性,通过穿透组织的近红外辐射远程杀灭细菌,以提高抗菌性能。Wu等[20]使用铜离子作为涂层,其能促进M1巨噬细胞的极化,从而诱导促炎反应,以抑制感染并实现免疫抗菌活性。Karaji等[21]使用电泳沉积法将由磷酸三钙和万古霉素组成的丝素蛋白溶液作为支架涂层,结果表明该涂层具有抗菌和诱导骨长入能力。研究已证明,采用经铜、锶、银、硅和锌等元素进行表面修饰的钛金属制备髋臼杯,其生物活性和抗菌性能均增强[22]。锶是通过促进新骨形成和抑制骨吸收来促进骨生长的重要元素,而银具有广谱杀菌性能。Wang等[23]的研究显示在TiO2涂层中联合使用上述两种金属离子,可增强材料成骨细胞扩散和骨结合、保持长期抗菌作用,还能避免单纯使用银离子时剂量超标引起的细胞毒性作用。Jiao等[24]采用飞秒激光在多孔钛合金表面构建了分级微槽结构,并且结合聚多巴胺黏附的银,通过聚多巴胺和分层结构协同作用实现了银吸附和释放的可调节性;与原始表面相比,表现出更好的抗菌性能。
1.2.3. 力学性能
传统金属假体因弹性模量远高于正常骨组织,植入人体后存在应力遮挡,进而致使局部出现骨质吸收、骨质疏松,甚至应力性骨折和假体松动。3D打印定制假体可通过设置不同孔径和孔隙率调控假体整体密度、强度和弹性模量,使其机械性能更好地匹配骨组织,从而有效地降低或消除应力遮挡效应[25]。3D打印定制假体还可以通过表面修饰改善机械性能。Sun等[26]通过微弧氧化工艺将石墨烯涂覆在钛合金上,从而显著改善钛合金的表面粗糙度。研究发现多孔石墨烯钛合金材料接近于正常骨组织的弹性模量,而且可促进具有多向分化潜能的脂肪干细胞增殖和黏附。与钛金属相比,钽金属具有更好的生物相容性和骨长入性能,机械性能更接近于骨组织。Fan等[27]发现单轴压缩试验时,钽支架等效应力为(411±1.43)MPa,显著大于钛支架;而杨氏模量为(2.61±0.02)GPa,仅为钛支架的一半;与钛支架相比,不同孔径的3D打印钽支架在生物力学性质上更接近实际骨组织。
近年来,3D打印复合材料成为研究热点。Paz-González等[28]研发了一种由3D打印聚乳酸层和碳纤维层压板组成的复合材料,拉伸模量为(19.29±0.48)GPa,拉伸强度为(238.91±25.95)MPa,力学性能与正常人体骨骼非常相似,可以用于制造髋关节股骨柄假体。Zhang等[29]使用了3D打印多孔钽假体置换桡骨头,显示假体具有理想的弹性模量,患者术后疼痛减轻,肘部功能和活动度改善,钽假体骨向内生长。随着技术发展和改进,研发的3D打印材料可以更好地满足假体制备需求。
2. 3D打印定制假体在髋关节翻修髋臼重建中的应用
髋关节翻修主要难点是巨大复杂髋臼骨缺损的处理[30]。髋臼重建旨在修复或替代缺损的髋臼结构,以恢复髋臼解剖结构和功能。根据重建的目的和方法不同,髋臼重建可以分为骨缺损修复、髋臼结构重建。传统髋臼假体难以完全匹配患者个体化髋臼解剖特点和缺损类型,而3D打印定制假体是基于患者个性化的解剖数据,制造与髋臼解剖相匹配并能精准修复骨缺损的假体,从而提高髋臼重建的精准性并减少手术时间和创伤。
在髋关节翻修领域,与传统假体相比,3D打印定制假体表面为多孔结构,具有良好的孔径和孔隙率,这种微孔结构既有利于骨长入,实现假体长期稳定;又增大了与骨面的摩擦力,有利于获得良好初始稳定性,减少或避免了假体松动的风险;3D打印定制假体的弹性模量与正常骨组织接近,可减少应力遮挡现象的发生。Wan等[31]将42例髋关节翻修患者根据翻修方法和翻修材料分为观察组(3D打印钛合金臼杯和垫块)和对照组(非3D打印钛合金臼杯和垫块),观察组术后疼痛视觉模拟评分(VAS)、Harris评分和生活质量健康调查量表(SF-36)评分均优于对照组,假体稳定性和骨长入也优于对照组。Berlinberg等[32]应用一种新型3D打印多孔钛合金髋臼假体进行68例髋关节翻修,术后随访至少2年,髋臼假体生存率为88%,末次随访时所有髋臼假体均显示影像学骨整合征象,无移位发生,表现出良好的生存率和骨整合性能。对于Paprosky Ⅱ、Ⅲ型中重度髋臼骨缺损患者,选择3D打印定制增强块、一体化定制假体、组配式定制假体,可获得较好的假体稳定性及生存率(图1)。
图 1.
Application of 3D printed augment and customized prosthesis for Paprosky type Ⅱ and Ⅲ acetabular bone defect in hip revision surgery
3D打印增强块与定制假体在髋关节翻修Paprosky Ⅱ、Ⅲ型髋臼骨缺损中的应用
2.1. 3D打印定制假体(增强块)应用于髋臼骨缺损修复
髋关节翻修术中髋臼骨缺损修复常用方法有骨水泥填充、分层打压植骨、结构性植骨以及采用Jumbo杯等,均存在优势及不足。其中,骨水泥填充后假体初始稳定性好,但远期容易松动,且增加再次翻修的难度;分层打压植骨对术者技术要求较高,存在感染、骨爬行替代时间长、植骨材料有限等局限性;结构性植骨近期疗效良好,远期容易松动、塌陷、吸收;Jumbo杯存在旋转中心上移、软组织撞击尤其是髂腰肌撞击等问题,且不适用于严重骨缺损患者,无法获得良好初始稳定性[33]。
规格固定的增强块和髋臼杯可以满足大多数髋臼骨缺损修复需求,但是对于一些复杂骨缺损,多变的缺损形状与增强块难以匹配。3D打印定制增强块为髋关节翻修骨缺损修复提供了一个新的解决方案,可以精确匹配骨缺损形状,从而精准修复骨缺损并恢复髋关节旋转中心。马立峰等[34]比较了3D 打印钛合金加强块和Jumbo臼杯重建髋臼骨缺损的早期疗效,患者随访时间24~37个月,结果显示两种方法都能获得满意临床疗效,但3D打印钛合金加强块组术后并发症发生率更低。Fu等[35]通过3D打印钛合金金属垫块对18例Paprosky Ⅲ型髋臼骨缺损进行修复,金属垫块与骨缺损及髋臼假体精准匹配,术后双下肢不等长和旋转中心恢复,髋关节功能明显改善,早期临床疗效良好。Kong等[36]应用3D打印钛金属增强块联合钽杯治疗23例髋关节翻修PaproskyⅢ型髋臼骨缺损,患者获随访2~7年,平均4.7年,均获得满意的髋关节功能和假体生存率。Ying等[37]应用3D打印钛金属增强块结合钽杯对髋关节翻修髋臼骨缺损进行了精准修复,并恢复了旋转中心,早期随访髋关节功能和临床效果满意。
2.2. 3D打印定制假体(一体化或组配式髋臼杯)应用于髋臼重建
对于复杂髋臼骨缺损,传统修复重建技术主要包括Cup-cage技术及Cup-cup技术。Cup-cage技术即“臼杯-重建笼”技术,于真臼内打入具有良好骨长入能力的金属髋臼杯,将髋臼加强环置于髋臼杯中,使用骨水泥固定内衬,常被用来处理复杂的髋臼骨缺损。Arvinte等[38]报道了Cup-cage技术治疗Paprosky Ⅲb型髋臼骨缺损,平均随访72个月(63~140个月),所有患者均无需重新翻修,但研究仅纳入7例患者且随访时间有限。Garceau等[39]报道采用Cup-cage 技术行髋关节翻修的10年失败率达61.6%,提示存在巨大髋臼骨缺损情况下,使用该技术疗效不可靠。Cup-cup技术即“杯中杯”技术,利用内侧残留的可支撑宿主骨压配一多孔钽杯修复巨大骨缺损,再以此钽杯为基础安放骨水泥臼杯。Zhang等[40]应用Cup-cup技术或联合打压植骨治疗18例Paprosky Ⅲ型骨缺损患者,中位随访时间61.0个月,术后早期脱位3例(16.7%),末次随访时髋关节功能及旋转中心位置良好。因此,他们认为Cup-cup技术单独或联合打压植骨可用于无骨盆不连续的Paprosky Ⅲ型髋臼骨缺损的治疗,然而术后并发症发生率高,特别是关节脱位,仍然是一个挑战。上述两种技术均可应用于髋关节翻修髋臼重建,可以简化手术操作,提高手术效率,但是难以精准匹配骨缺损和解剖重建旋转中心。
而3D打印定制假体(一体化或组配式髋臼杯)可以精准匹配骨缺损和解剖重建旋转中心。Alqwbani等[41]在髋关节翻修中使用多孔钽金属小梁杯和增强块重建髋臼骨缺损,得到了令人满意的临床和影像学结果。3D打印定制假体可以根据患者髋臼骨缺损的大小、形态进行个体化修复;根据髋臼周围骨质的情况设计假体螺钉的数量和方向,提高假体的初始稳定性;可以在假体表面进行理化和生物学处理,提高假体骨长入能力,有助于增加髋臼杯的远期稳定性,从而降低假体松动的风险。Di Laur等[42]应用3D打印定制髋臼假体治疗26例Paprosky Ⅲb型髋臼骨缺损患者,中位随访时间53个月,24例(92%)在假体表面观察到骨长入,12个月时可见髋臼壁和顶部以及周围翼部骨长入,无假体松动、断裂、移位现象发生。Gruber等[43]对16例Paprosky Ⅲ型髋臼骨缺损应用定制三翼型髋臼杯进行髋臼重建,进行了平均12.2个月随访,获得了良好功能和影像学结果。Xiao等[44]使用多孔钽增强块结合钛涂层杯对31例Paprosky Ⅲa型和10例Paprosky Ⅲb型髋臼骨缺损患者进行髋关节翻修,平均随访时间122.8个月,Harris 髋关节评分从术前平均32.1分提高至85.3分,取得了令人满意的长期影像学和临床结果。Hao等[45]进行了一项回顾性研究,纳入2015年—2018年使用3D打印钛杯和增强块进行髋关节翻修的58例PaproskyⅡ、Ⅲ型髋臼骨缺损患者,平均随访64.5个月,Harris评分、Oxford评分分别从(33.0±10.7)、(11.4±3.4)分提高至(80.3±8.8)、(35.8±2.4)分,髋臼假体生存率为93.0%,无菌性松动翻修率2.3%。Hube等[46]使用钽杯结合2个增强块应用“footing”支撑技术治疗 PaproskyⅢb型髋臼骨缺损,获得了良好的中期随访效果。Romagnoli等[47]使用CT 评估定制髋臼假体应用于PaproskyⅢ型髋臼骨缺损髋关节翻修中,术前计划与术后位置之间的准确性,发现3D打印定制髋臼假体位置定位准确、可靠。Scharff-Baauw等[48]在50例巨大髋臼骨缺损伴骨盆不连续患者翻修术中采用定制一体化三翼髋臼假体,经术后2年随访显示患者髋关节功能良好、满意度较高。
3. 3D打印定制假体面临的问题及展望
3D打印定制假体用于髋关节翻修髋臼重建中具有许多优势,术后髋关节功能Harris评分、疼痛VAS评分与传统假体相比均有进一步提升。另外3D打印定制假体的稳定性和骨长入性能优于非3D打印的金属杯和增强块;此外由于孔隙足够、孔隙均匀,3D打印定制假体表面摩擦系数优异,进一步延长了假体使用寿命。因此,使用3D打印定制假体进行髋臼重建可以更好地恢复髋关节功能,减少疼痛并改善患者的生活质量。
但3D打印定制假体也面临一些问题和挑战。① 3D打印定制假体的材料和表面修饰有待进一步深入研究,需要开发具有更好生物相容性、力学性能、骨长入性能、抗感染性能的材料。② 3D打印定制假体的设计和制造属于医疗器械应用领域,需要符合相关的监管认证和法律法规要求。未来需要制定严格的标准和规范,确保3D打印假体的质量和安全性。③ 目前,临床医师过多关注于3D打印定制假体对解剖结构的修复和重建,且多数临床应用文献为重复研究,有待进一步研究集结构修复和功能重建为一体的3D打印定制假体,以及更加深入、长期随访疗效。④ 对于高度个体化3D打印定制假体,为确保其设计和制造过程的精确性,术前准备时间较长且制造成本较高,限制了其在临床广泛应用,需要进一步优化生产流程和工艺,减少假体制造成本。⑤ 由于术前对骨溶解范围评估存在差异、髋关节翻修术中假体取出造成骨缺损的不确定性,3D打印定制假体难以适应所有术中情况,因此术前影像学评估、术中灵活的手术策略,以及多学科团队协作显得尤为重要。随着技术的发展和改进,期待3D打印定制假体更优越的材料性能、更高的精准性,以及更低的生产成本,进一步促进其在髋关节翻修个性化髋臼重建中的应用。
利益冲突 在课题研究和文章撰写过程中不存在利益冲突;经费支持没有影响文章观点
作者贡献声明 张衡、马晓东:文章撰写及修改;李宽新、刘扬:观点形成;周建生、陶钧:对文章的知识性内容作批评性审阅;李博闻:文献资料的收集及整理
Funding Statement
蚌埠医学院第一附属医院优秀青年科学基金项目(2021byyfyyq04)
Excellent Youth Science Foundation Project of the First Affiliated Hospital of Bengbu Medical College (2021byyfyyq04)
Contributor Information
建生 周 (Jiansheng ZHOU), Email: zhoujs12399@163.com.
钧 陶 (Jun TAO), Email: taojun777999@163.com.
References
- 1.Serfaty A. Hip arthroplasty: current concepts and potential complications. Radiologia Brasileira, 2020, 53(1): Ⅶ.
- 2.Vijayaraghavan R, Loganathan S, Valapa RB. 3D bioprinted photo crosslinkable GelMA/methylcellulose hydrogel mimicking native corneal model with enhanced in vitro cytocompatibility and sustained keratocyte phenotype for stromal regeneration. Int J Biol Macromol, 2024, 264(Pt 1): 130472.
- 3.Darbandi KR, Amin BK Innovation and evaluations of 3D printing resins modified with zirconia nanoparticles and silver nanoparticle-immobilized halloysite nanotubes for dental restoration. Coatings. 2024;14(3):310. doi: 10.3390/coatings14030310. [DOI] [Google Scholar]
- 4.Tian H, Gao S, Yu J, et al Application of digital modeling and three-dimensional printing of titanium mesh for reconstruction of thyroid cartilage in partial laryngectomy. Acta Otolaryngol. 2022;142(3-4):363–368. doi: 10.1080/00016489.2022.2055138. [DOI] [PubMed] [Google Scholar]
- 5.Hu X, Chen Y, Cai W, et al Computer-aided design and 3D printing of hemipelvic endoprosthesis for personalized limb-salvage reconstruction after periacetabular tumor resection. Bioengineering (Basel) 2022;9(8):400. doi: 10.3390/bioengineering9080400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Chiu KY, Huang JY, Su YH, et al A 3D-printed bioactive glass scaffold coated with sustained-release PLGA/simvastatin stimulates calvarial bone repair. Materials & Design. 2024;241:112898. doi: 10.1016/j.matdes.2024.112898. [DOI] [Google Scholar]
- 7.Zhu D, Wang L, Fu J, et al Comparison of customized 3D-printed prosthesis and screw-rod-cage system reconstruction following resection of periacetabular tumors. Front Oncol. 2022;12:953266. doi: 10.3389/fonc.2022.953266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Dall’Ava L, Hothi H, Henckel J, et al Osseointegration of retrieved 3D-printed, off-the-shelf acetabular implants. Bone Joint Res. 2021;10(7):388–400. doi: 10.1302/2046-3758.107.BJR-2020-0462.R1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Sun Y, Hu W, Wu C, et al Research progress on mechanical properties of 3D printed biomedical titanium alloys. Mater Sci Eng C Mater Biol Appl. 2023;32(21):9489–9503. [Google Scholar]
- 10.He S, Zhu J, Jing Y, et al Effect of 3D-printed porous titanium alloy pore structure on bone regeneration: a review. Coatings. 2024;14(3):253. doi: 10.3390/coatings14030253. [DOI] [Google Scholar]
- 11.Zhang X, Guan S, Qiu J, et al Atomic layer deposition of tantalum oxide films on 3D-printed Ti6Al4V scaffolds with enhanced osteogenic property for orthopedic implants. ACS Biomater Sci Eng. 2023;9(7):4197–4207. doi: 10.1021/acsbiomaterials.3c00217. [DOI] [PubMed] [Google Scholar]
- 12.Chen YT, Hsiao HY, Wang CY, et al Improving bioactivity in 3D-printed Ti-6Al-4V alloy scaffold via CaO-MgO-SiO2 glass-ceramic coating. J Alloys Compd. 2024;976:173387. doi: 10.1016/j.jallcom.2023.173387. [DOI] [Google Scholar]
- 13.Klasan A, Bayan A, Holdaway I, et al Liner type has no impact on bone mineral density changes around a 3D printed trabecular titanium acetabular component. Orthop Traumatol Surg Res. 2023;109(1):103136. doi: 10.1016/j.otsr.2021.103136. [DOI] [PubMed] [Google Scholar]
- 14.Sheng X, Liu H, Xu Y, et al Functionalized biomimetic mineralized collagen promotes osseointegration of 3D-printed titanium alloy microporous interface. Mater Today Bio. 2023;24:100896. doi: 10.1016/j.mtbio.2023.100896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Li X, Zhu L, Che Z, et al. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering. Biomed Mater, 2024, 19(4).
- 16.Wang P, Mao S, Jiao Y, et al. Novel nano-thin amorphous Ta-coating on 3D-printed porous TC4 implant: Microstructure and enhanced biological effects. Materials & Design, 2024: 112986. https://doi.org/10.1016/j.matdes.2024.112986.
- 17.García-Robledo H, García-Fernández L, Parra J, et al. Ti/Ta-based composite polysaccharide scaffolds for guided bone regeneration in total hip arthroplasty. Int J Biol Macromol, 2024, 271(Pt 1): 132573.
- 18.Maimaiti B, Zhang N, Yan L, et al Stable ZnO-doped hydroxyapatite nanocoating for anti-infection and osteogenic on titanium. Colloids Surf B Biointerfaces. 2020;186:110731. doi: 10.1016/j.colsurfb.2019.110731. [DOI] [PubMed] [Google Scholar]
- 19.Li Z, Jin L, Yang X, et al A multifunctional ionic liquid coating on 3D-Printed prostheses: Combating infection, promoting osseointegration. Mater Today Bio. 2024;26:101076. doi: 10.1016/j.mtbio.2024.101076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Wu Y, Shi X, Wang J, et al A surface metal ion-modified 3D-printed Ti-6Al-4V implant with direct and immunoregulatory antibacterial and osteogenic activity. Front Bioeng Biotechnol. 2023;11:1142264. doi: 10.3389/fbioe.2023.1142264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Karaji ZG, Jahanmard F, Mirzaei AH, et al A multifunctional silk coating on additively manufactured porous titanium to prevent implant-associated infection and stimulate bone regeneration. Biomed Mater. 2020;15(6):065016. doi: 10.1088/1748-605X/aba40b. [DOI] [PubMed] [Google Scholar]
- 22.Ma Y, Yan J, Yan T, et al Biological properties of Cu-bearing and Ag-bearing titanium-based alloys and their surface modifications: A review of antibacterial aspect. Frontiers in Materials. 2022;9:999794. doi: 10.3389/fmats.2022.999794. [DOI] [Google Scholar]
- 23.Wang H, Zheng TX, Yang NY, et al Osteogenic and long-term antibacterial properties of Sr/Ag-containing TiO2 microporous coating in vitro and in vivo. J Mater Chem B. 2023;11(13):2972–2988. doi: 10.1039/D2TB01658C. [DOI] [PubMed] [Google Scholar]
- 24.Jiao Y, Li X, Zhang X, et al Silver antibacterial surface adjusted by hierarchical structure on 3D printed porous titanium alloy. Applied Surface Science. 2023;610:155519. doi: 10.1016/j.apsusc.2022.155519. [DOI] [Google Scholar]
- 25.Reinhard J, Urban P, Bell S, et al Automatic data-driven design and 3D printing of custom ocular prostheses. Nat Commun. 2024;15(1):1360. doi: 10.1038/s41467-024-45345-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Sun X, Tong S, Yang S, et al The effects of graphene on the biocompatibility of a 3D-printed porous Titanium alloy. Coatings. 2021;11(12):1509. doi: 10.3390/coatings11121509. [DOI] [Google Scholar]
- 27.Fan H, Deng S, Tang W, et al Highly porous 3D printed tantalum scaffolds have better biomechanical and microstructural properties than titanium scaffolds. BioMed Res Int. 2021;2021:2899043. doi: 10.1155/2021/2899043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Paz-González JA, Velasco-Santos C, Villarreal-Gómez LJ, et al Structural composite based on 3D printing polylactic acid/carbon fiber laminates (PLA/CFRC) as an alternative material for femoral stem prosthesis. J Mech Behav Biomed. 2023;138:105632. doi: 10.1016/j.jmbbm.2022.105632. [DOI] [PubMed] [Google Scholar]
- 29.Zhang C, Chen H, Fan H, et al Radial head replacement using personalized 3D printed porous tantalum prosthesis. J Mater Res Technol. 2022;20:3705–3713. doi: 10.1016/j.jmrt.2022.08.027. [DOI] [Google Scholar]
- 30.Hao Y, Wang L, Jiang W, et al 3D printing hip prostheses offer accurate reconstruction, stable fixation, and functional recovery for revision total hip arthroplasty with complex acetabular bone defect. Engineering. 2020;6(11):1285–1290. doi: 10.1016/j.eng.2020.04.013. [DOI] [Google Scholar]
- 31.Wan L, Wu G, Cao P, et al Curative effect and prognosis of 3D printing titanium alloy trabecular cup and pad in revision of acetabular defect of hip joint. Exp Ther Med. 2019;18(1):659–663. doi: 10.3892/etm.2019.7621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Berlinberg EJ, Kavian JA, Roof MA, et al Minimum 2-year outcomes of a novel 3d-printed fully porous titanium acetabular shell in revision total hip arthroplasty. Arthroplast Today. 2022;18:39–44. doi: 10.1016/j.artd.2022.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.王跃辉, 邹士平, 陈宾, 等 多孔钽金属Jumbo杯在髋关节翻修术中的应用. 中国骨伤. 2022;35(1):20–25. [Google Scholar]
- 34.马立峰, 吴杰, 郭艾, 等 3D打印钛金属加强块和Jumbo臼杯重建髋臼骨缺损早期临床疗效的对比研究. 中华骨与关节外科杂志. 2020;13(6):467–471. doi: 10.3969/j.issn.2095-9958.2020.06.06. [DOI] [Google Scholar]
- 35.Fu J, Ni M, Zhu F, et al Reconstruction of Paprosky type Ⅲ acetabular defects by three-dimensional printed porous augment: techniques and clinical outcomes of 18 consecutive cases. Orthop Surg. 2022;14(5):1004–1010. doi: 10.1111/os.13250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Kong K, Zhao C, Chang Y, et al Use of customized 3D-printed titanium augment with tantalum trabecular cup for large acetabular bone defects in revision total hip arthroplasty: A midterm follow-up study. Front Bioeng Biotechnol. 2022;10:900905. doi: 10.3389/fbioe.2022.900905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Ying J, Cheng L, Li J, et al Treatment of acetabular bone defect in revision of total hip arthroplasty using 3D printed tantalum acetabular augment. Orthopaedic Surgery. 2023;15(5):1264–1271. doi: 10.1111/os.13691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Arvinte D, Kiran M, Sood M Cup-cage construct for massive acetabular defect in revision hip arthroplasty—A case series with medium to long-term follow-up. J Clin Orthop Trauma. 2020;11(1):62–66. doi: 10.1016/j.jcot.2019.04.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Garceau SP, Warschawski Y, Joly D, et al Hip arthroplasty with the use of a reconstruction cage and porous metal augment to treat massive acetabular bone loss: a midterm follow-up. J Arthroplasty. 2022;37(7):S636–S641. doi: 10.1016/j.arth.2022.02.111. [DOI] [PubMed] [Google Scholar]
- 40.Zhang X, Li Z, Wang W, et al Mid-term results of revision surgery using double-trabecular metal cups alone or combined with impaction bone grafting for complex acetabular defects. J Orthop Surg Res. 2020;15(1):301. doi: 10.1186/s13018-020-01828-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Alqwbani M, Wang Z, Wang Q, et al Porous tantalum shell and augment for acetabular defect reconstruction in revision total hip arthroplasty: a mid-term follow-up study. Int Orthop. 2022;46(7):1515–1520. doi: 10.1007/s00264-022-05353-w. [DOI] [PubMed] [Google Scholar]
- 42.Di Laura A, Henckel J, Hart A Custom 3D-printed implants for acetabular reconstruction: intermediate-term functional and radiographic results. JBJS Open Access. 2023;8(2):e22.00120. doi: 10.2106/JBJS.OA.22.00120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Gruber MS, Jesenko M, Burghuber J, et al Functional and radiological outcomes after treatment with custom-made acetabular components in patients with Paprosky type 3 acetabular defects: short-term results. BMC Musculoskelet Disord. 2020;21(1):835. doi: 10.1186/s12891-020-03851-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Xiao Q, Xu B, Zhou K, et al Long-term results of combined porous tantalum augments and titanium-coated cups for Paprosky type Ⅲ bone defects in acetabular revision. Int Orthop. 2021;45(7):1699–1706. doi: 10.1007/s00264-021-05075-5. [DOI] [PubMed] [Google Scholar]
- 45.Hao L, Zhang Y, Bian W, et al Standardized 3D-printed trabecular titanium augment and cup for acetabular bone defects in revision hip arthroplasty: a mid-term follow-up study. J Orthop Surg Res. 2023;18(1):521. doi: 10.1186/s13018-023-03986-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Hube R, Zimmerer A, Nonnenmacher L, et al Reconstruction of Paprosky 3B acetabular defects with porous tantalum shells and augments in revision total hip arthroplasty using the footing technique. Orthopaedic Proceedings. 2023;105(Supp_12):2. doi: 10.1302/1358-992X.2023.12.002. [DOI] [Google Scholar]
- 47.Romagnoli M, Zaffagnini M, Carillo E, et al Custom-made implants for massive acetabular bone loss: accuracy with CT assessment. J Orthop Surg Res. 2023;18(1):742. doi: 10.1186/s13018-023-04230-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Scharff-Baauw M, Van Hooff ML, Van Hellemondt GG, et al Good results at 2-year follow-up of a custom-made triflange acetabular component for large acetabular defects and pelvic discontinuity: a prospective case series of 50 hips. Acta Orthop. 2021;92(3):297–303. doi: 10.1080/17453674.2021.1885254. [DOI] [PMC free article] [PubMed] [Google Scholar]