Abstract
1. Defolliculated Xenopus oocytes were voltage clamped in bathing solutions containing 115 mM KCl and 1.8 mM CaCl2. External application of H2O2 transiently elicited voltage-dependent outward rectifying currents within several seconds. Upon depolarization to +50 mV these currents had an activation time constant of 370 ms and reached amplitudes of up to 70 microA. This current was also observed in oocytes without the vitelline membrane. 2. The current was abolished by 500 microM niflumic acid, by the replacement of external Cl- by methanesulphonate, or when extracellular Ca2+ was removed indicating the involvement of Ca2+-activated Cl- channels, which are very abundant in Xenopus oocytes. 3. While the current could be recorded in bathing solutions containing Li+, K+, Rb+, Cs+ and NH4+, extracellular Na+ abolished the current completely (IC50 = 6 mM Na+). 4. The H2O2-induced Cl- current was half-maximally blocked by approximately 25 microM 2'4'-dichlorobenzamil, 250 microM MgCl2, 100 microM CdCl2 and 100 microM NiCl2. These substances have been shown to block Na+-Ca2+ exchangers in various tissues. 5. The data are consistent with the existence of an endogenous Na+-Ca2+ exchanger in the plasma membrane of Xenopus oocytes, which runs in reverse mode in the absence of high external Na+ and the presence of external Ca2+. This endogenous component has to be considered when Xenopus oocytes are used for heterologous expression studies.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson P. S. Kinetic properties of the plasma membrane Na+-H+ exchanger. Annu Rev Physiol. 1985;47:545–560. doi: 10.1146/annurev.ph.47.030185.002553. [DOI] [PubMed] [Google Scholar]
- Barish M. E. A transient calcium-dependent chloride current in the immature Xenopus oocyte. J Physiol. 1983 Sep;342:309–325. doi: 10.1113/jphysiol.1983.sp014852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon I. M., Kaneko M., Hata T., Panagia V., Dhalla N. S. Alterations in cardiac membrane Ca2+ transport during oxidative stress. Mol Cell Biochem. 1990 Dec 20;99(2):125–133. doi: 10.1007/BF00230342. [DOI] [PubMed] [Google Scholar]
- Doan T. N., Gentry D. L., Taylor A. A., Elliott S. J. Hydrogen peroxide activates agonist-sensitive Ca(2+)-flux pathways in canine venous endothelial cells. Biochem J. 1994 Jan 1;297(Pt 1):209–215. doi: 10.1042/bj2970209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldhaber J. I., Liu E. Excitation-contraction coupling in single guinea-pig ventricular myocytes exposed to hydrogen peroxide. J Physiol. 1994 May 15;477(Pt 1):135–147. doi: 10.1113/jphysiol.1994.sp020178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaczorowski G. J., Slaughter R. S., King V. F., Garcia M. L. Inhibitors of sodium-calcium exchange: identification and development of probes of transport activity. Biochim Biophys Acta. 1989 May 9;988(2):287–302. doi: 10.1016/0304-4157(89)90022-1. [DOI] [PubMed] [Google Scholar]
- Kaminishi T., Matsuoka T., Yanagishita T., Kako K. J. Increase vs. decrease of calcium uptake by isolated heart cells induced by H2O2 vs. HOCl. Am J Physiol. 1989 Mar;256(3 Pt 1):C598–C607. doi: 10.1152/ajpcell.1989.256.3.C598. [DOI] [PubMed] [Google Scholar]
- Kleyman T. R., Cragoe E. J., Jr Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988 Oct;105(1):1–21. doi: 10.1007/BF01871102. [DOI] [PubMed] [Google Scholar]
- Longoni S., Coady M. J., Ikeda T., Philipson K. D. Expression of cardiac sarcolemmal Na+-Ca2+ exchange activity in Xenopus laevis oocytes. Am J Physiol. 1988 Dec;255(6 Pt 1):C870–C873. doi: 10.1152/ajpcell.1988.255.6.C870. [DOI] [PubMed] [Google Scholar]
- Miledi R. A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc R Soc Lond B Biol Sci. 1982 Jul 22;215(1201):491–497. doi: 10.1098/rspb.1982.0056. [DOI] [PubMed] [Google Scholar]
- Parekh A. B., Foguet M., Lübbert H., Stühmer W. Ca2+ oscillations and Ca2+ influx in Xenopus oocytes expressing a novel 5-hydroxytryptamine receptor. J Physiol. 1993 Sep;469:653–671. doi: 10.1113/jphysiol.1993.sp019836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philipson K. D., Nishimoto A. Y. Na+-Ca2+ exchange is affected by membrane potential in cardiac sarcolemmal vesicles. J Biol Chem. 1980 Jul 25;255(14):6880–6882. [PubMed] [Google Scholar]
- Reeves J. P., Bailey C. A., Hale C. C. Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem. 1986 Apr 15;261(11):4948–4955. [PubMed] [Google Scholar]
- Sasaki S., Ishibashi K., Nagai T., Marumo F. Regulation mechanisms of intracellular pH of Xenopus laevis oocyte. Biochim Biophys Acta. 1992 Oct 6;1137(1):45–51. doi: 10.1016/0167-4889(92)90098-v. [DOI] [PubMed] [Google Scholar]
- Shi Z. Q., Davison A. J., Tibbits G. F. Effects of active oxygen generated by DTT/Fe2+ on cardiac Na+/Ca2+ exchange and membrane permeability to Ca2+. J Mol Cell Cardiol. 1989 Oct;21(10):1009–1016. doi: 10.1016/0022-2828(89)90799-2. [DOI] [PubMed] [Google Scholar]
- Sigel E., Baur R., Porzig H., Reuter H. mRNA-induced expression of the cardiac Na+-Ca2+ exchanger in Xenopus oocytes. J Biol Chem. 1988 Oct 15;263(29):14614–14616. [PubMed] [Google Scholar]
- Supplisson S., Kado R. T., Bergman C. A possible Na/Ca exchange in the follicle cells of Xenopus oocyte. Dev Biol. 1991 Jun;145(2):231–240. doi: 10.1016/0012-1606(91)90122-j. [DOI] [PubMed] [Google Scholar]
- White M. M., Aylwin M. Niflumic and flufenamic acids are potent reversible blockers of Ca2(+)-activated Cl- channels in Xenopus oocytes. Mol Pharmacol. 1990 May;37(5):720–724. [PubMed] [Google Scholar]
