Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Jul 1;486(Pt 1):229–236. doi: 10.1113/jphysiol.1995.sp020805

The effects of lyotropic anions on electric field-induced guidance of cultured frog nerves.

L Erskine 1, C D McCaig 1
PMCID: PMC1156511  PMID: 7562638

Abstract

1. Dissociated Xenopus neurites turn cathodally in small applied electric fields. Increasing the external polycation concentration alters the direction and extent of field-induced orientation. A decrease in membrane surface charge may underlie these effects. 2. Lyotropic anions increase membrane surface charge and we have examined the effect of perchlorate (ClO4-), thiocyanate (SCN-) and sulphate (SO4(2-)) on galvanic nerve orientation. 3. Perchlorate and SCN- had no effect on field-induced cathodal turning, whereas incubation with SO4(2-) was inhibitory. In addition to its effects on surface charge, SO4(2-) increases production of the second messengers diacylglycerol and inositol trisphosphate. Interestingly, lithium (Li+), a blocker of polyphosphoinositide metabolism, had a similar effect to SO4(2-) on field-induced neurite orientation. 4. We conclude that increasing surface charge with lyotropic anions neither enhances galvanotropic orientation nor underlies the inhibitory effects of SO4(2-) and suggest that modulation of galvanotropism by SO4(2-) occurs owing to changes in the inositolphospholipid second messenger system.

Full text

PDF
229

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Audigier S. M., Wang J. K., Greengard P. Membrane depolarization and carbamoylcholine stimulate phosphatidylinositol turnover in intact nerve terminals. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2859–2863. doi: 10.1073/pnas.85.8.2859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedlack R. S., Jr, Wei M., Loew L. M. Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth. Neuron. 1992 Sep;9(3):393–403. doi: 10.1016/0896-6273(92)90178-g. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Downes C. P., Hanley M. R. Neural and developmental actions of lithium: a unifying hypothesis. Cell. 1989 Nov 3;59(3):411–419. doi: 10.1016/0092-8674(89)90026-3. [DOI] [PubMed] [Google Scholar]
  4. Dani J. A., Sanchez J. A., Hille B. Lyotropic anions. Na channel gating and Ca electrode response. J Gen Physiol. 1983 Feb;81(2):255–281. doi: 10.1085/jgp.81.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Delay M., Garcia D. E., Sanchez J. A. The effects of lyotropic anions on charge movement, calcium currents and calcium signals in frog skeletal muscle fibres. J Physiol. 1990 Jun;425:449–469. doi: 10.1113/jphysiol.1990.sp018113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Erskine L., Stewart R., McCaig C. D. Electric field-directed growth and branching of cultured frog nerves: effects of aminoglycosides and polycations. J Neurobiol. 1995 Apr;26(4):523–536. doi: 10.1002/neu.480260406. [DOI] [PubMed] [Google Scholar]
  7. Flaccus A., Janetzko A., Tekotte H., Margolis R. K., Margolis R. U. Immunocytochemical localization of chondroitin and chondroitin 4- and 6-sulfates in developing rat cerebellum. J Neurochem. 1991 May;56(5):1608–1615. doi: 10.1111/j.1471-4159.1991.tb02058.x. [DOI] [PubMed] [Google Scholar]
  8. Gabev E., Kasianowicz J., Abbott T., McLaughlin S. Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP2). Biochim Biophys Acta. 1989 Feb 13;979(1):105–112. doi: 10.1016/0005-2736(89)90529-4. [DOI] [PubMed] [Google Scholar]
  9. Green W. N., Andersen O. S. Surface charges and ion channel function. Annu Rev Physiol. 1991;53:341–359. doi: 10.1146/annurev.ph.53.030191.002013. [DOI] [PubMed] [Google Scholar]
  10. Hille B., Woodhull A. M., Shapiro B. I. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301–318. doi: 10.1098/rstb.1975.0011. [DOI] [PubMed] [Google Scholar]
  11. Hinkle L., McCaig C. D., Robinson K. R. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J Physiol. 1981 May;314:121–135. doi: 10.1113/jphysiol.1981.sp013695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hotary K. B., Robinson K. R. Evidence of a role for endogenous electrical fields in chick embryo development. Development. 1992 Apr;114(4):985–996. doi: 10.1242/dev.114.4.985. [DOI] [PubMed] [Google Scholar]
  13. Letourneau P. C., Condic M. L., Snow D. M. Extracellular matrix and neurite outgrowth. Curr Opin Genet Dev. 1992 Aug;2(4):625–634. doi: 10.1016/s0959-437x(05)80183-2. [DOI] [PubMed] [Google Scholar]
  14. Lohof A. M., Quillan M., Dan Y., Poo M. M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J Neurosci. 1992 Apr;12(4):1253–1261. doi: 10.1523/JNEUROSCI.12-04-01253.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McCaig C. D. Studies on the mechanism of embryonic frog nerve orientation in a small applied electric field. J Cell Sci. 1989 Aug;93(Pt 4):723–730. doi: 10.1242/jcs.93.4.723. [DOI] [PubMed] [Google Scholar]
  16. McLaughlin S. G., Szabo G., Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol. 1971 Dec;58(6):667–687. doi: 10.1085/jgp.58.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McLaughlin S., Bruder A., Chen S., Moser C. Chaotropic anions and the surface potential of bilayer membranes. Biochim Biophys Acta. 1975 Jun 25;394(2):304–313. doi: 10.1016/0005-2736(75)90267-9. [DOI] [PubMed] [Google Scholar]
  18. McLaughlin S., Poo M. M. The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys J. 1981 Apr;34(1):85–93. doi: 10.1016/S0006-3495(81)84838-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Patel N., Poo M. M. Orientation of neurite growth by extracellular electric fields. J Neurosci. 1982 Apr;2(4):483–496. doi: 10.1523/JNEUROSCI.02-04-00483.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Poo M. In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng. 1981;10:245–276. doi: 10.1146/annurev.bb.10.060181.001333. [DOI] [PubMed] [Google Scholar]
  21. Sit K. H., Wong K. P. Sulphate induces very fast cell rounding and detachment. Biochim Biophys Acta. 1991 Apr 17;1092(2):180–183. doi: 10.1016/0167-4889(91)90154-p. [DOI] [PubMed] [Google Scholar]
  22. Sorimachi M., Nishimura S., Yamagami K. Possible role of surface potential in the gating mechanism of Ca2+ channels in cat adrenal chromaffin cells: studies with fura-2 microfluorometry. Brain Res. 1992 Mar 6;574(1-2):325–328. doi: 10.1016/0006-8993(92)90834-v. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES