Abstract
1. Transmural electrical stimulation (10 Hz, 1 ms, 40 V for 10 s) of cat adrenal glands perfused at room temperature with Krebs-Hepes solution produced catecholamine secretory responses which were reproducible when stimulations were applied at 5 min intervals. Such responses were inhibited about 20% by atropine (1 microM) and 80% by hexamethonium (30 microM). Apamin (100 nM) increased the secretory response 2.5-fold in the presence of atropine and 8-fold in the presence of hexamethonium. 2. Potentiation by apamin of secretory responses evoked by 100-pulse trains was similar at 5, 10 and 20 Hz (about 2-fold). When glands were continuously stimulated at 3 Hz, apamin increased 4-fold the initial secretion plateau. Continuous stimulation at a higher frequency (20 Hz) produced a sharp secretory peak followed by a small, sustained plateau; apamin did not alter this plateau. Apamin also enhanced the secretory responses obtained with sustained stimulation with acetylcholine (10 or 200 microM). 3. Secretion peaks induced by brief acetylcholine pulses (10 microM for 10 s) applied to isolated and superfused cat adrenal chromaffin cells were enhanced more than 3-fold by 100 nM apamin. Charybdotoxin (10 nM) did not enhance these secretory peaks. 4. In perfused cat adrenal glands, charybdotoxin (10 nM) affected neither the secretion evoked by trains of electrical stimulation applied at different frequencies nor the secretion evoked by acetylcholine pulses. 5. In 0.5 mM [Ca2+]o, apamin enhanced 3-fold the secretion evoked by electrical stimulation trains of 100 pulses (10 Hz, 10 s) and almost 6-fold the acetylcholine (10 microM for 10 s)-induced secretion. In 5 mM Ca2+, apamin enhanced the secretory responses to electrical stimulation and acetylcholine 2- and 10-fold, respectively. Charybdotoxin enhanced 2.5-fold the secretory response to electrical stimulation in 0.5 mM Ca2+, although this effect was not statistically significant. A synergistic interaction between the two toxins on catecholamine release induced by electrical stimulation was observed at low but not at high [Ca2+]o. 6. Simultaneous release of acetylcholine and catecholamines upon electrical stimulation was achieved in glands in which the endogenous acetylcholine stores in the splanchnic nerve terminals had been prelabelled by perfusion with [3H]choline. While apamin enhanced more than 2-fold the postsynaptic release of catecholamines, the presynaptic release of acetylcholine remained unaffected. 7. The results are compatible with the hypothesis that, under physiological conditions, Ca(2+)-activated SK channels present in chromaffin cells control the firing patterns of action potentials induced by the acetylcholine released from splanchnic nerves during stress.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abad F., Garrido B., López M. G., García A. G. The source of calcium for muscarinic-mediated catecholamine release from cat adrenals. J Physiol. 1992 Jan;445:725–740. doi: 10.1113/jphysiol.1992.sp018947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams P. R., Brown D. A., Constanti A. M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol. 1982 Sep;330:537–572. doi: 10.1113/jphysiol.1982.sp014357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alamo L., García A. G., Borges R. Electrically-evoked catecholamine release from cat adrenals. Role of cholinergic receptors. Biochem Pharmacol. 1991 Aug 8;42(5):973–978. doi: 10.1016/0006-2952(91)90277-c. [DOI] [PubMed] [Google Scholar]
- Albino A. P., Le Strange R., Oliff A. I., Furth M. E., Old L. J. Transforming ras genes from human melanoma: a manifestation of tumour heterogeneity? Nature. 1984 Mar 1;308(5954):69–72. doi: 10.1038/308069a0. [DOI] [PubMed] [Google Scholar]
- Artalejo A. R., García A. G., Neher E. Small-conductance Ca(2+)-activated K+ channels in bovine chromaffin cells. Pflugers Arch. 1993 Apr;423(1-2):97–103. doi: 10.1007/BF00374966. [DOI] [PubMed] [Google Scholar]
- Barrett E. F., Barret J. N. Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones. J Physiol. 1976 Mar;255(3):737–774. doi: 10.1113/jphysiol.1976.sp011306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blatz A. L., Magleby K. L. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature. 1986 Oct 23;323(6090):718–720. doi: 10.1038/323718a0. [DOI] [PubMed] [Google Scholar]
- Borges R., Sala F., García A. G. Continuous monitoring of catecholamine release from perfused cat adrenals. J Neurosci Methods. 1986 Jun;16(4):289–300. doi: 10.1016/0165-0270(86)90054-3. [DOI] [PubMed] [Google Scholar]
- Brandt B. L., Hagiwara S., Kidokoro Y., Miyazaki S. Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol. 1976 Dec;263(3):417–439. doi: 10.1113/jphysiol.1976.sp011638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. A., Higashida H. Voltage- and calcium-activated potassium currents in mouse neuroblastoma x rat glioma hybrid cells. J Physiol. 1988 Mar;397:149–165. doi: 10.1113/jphysiol.1988.sp016993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess G. M., Claret M., Jenkinson D. H. Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells. J Physiol. 1981 Aug;317:67–90. doi: 10.1113/jphysiol.1981.sp013814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collier B., Johnson G., Kirpekar S. M., Prat J. The release of acetylcholine and of catecholamine from the cat's adrenal gland. Neuroscience. 1984 Nov;13(3):957–964. doi: 10.1016/0306-4522(84)90110-6. [DOI] [PubMed] [Google Scholar]
- Cook N. S., Haylett D. G. Effects of apamin, quinine and neuromuscular blockers on calcium-activated potassium channels in guinea-pig hepatocytes. J Physiol. 1985 Jan;358:373–394. doi: 10.1113/jphysiol.1985.sp015556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOUGLAS W. W., RUBIN R. P. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol. 1961 Nov;159:40–57. doi: 10.1113/jphysiol.1961.sp006791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas W. W., Poisner A. M. Preferential release of adrenaline from the adrenal medulla by muscarine and pilocarpine. Nature. 1965 Dec 11;208(5015):1102–1103. doi: 10.1038/2081102a0. [DOI] [PubMed] [Google Scholar]
- Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia A. G., Hernandez M., Horga J. F., Sanchez-Garcia P. On the release of catecholamines and dopamine-beta-hydroxylase evoked by ouabain in the perfused cat adrenal gland. Br J Pharmacol. 1980 Mar;68(3):571–583. doi: 10.1111/j.1476-5381.1980.tb14573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gimenez-Gallego G., Navia M. A., Reuben J. P., Katz G. M., Kaczorowski G. J., Garcia M. L. Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proc Natl Acad Sci U S A. 1988 May;85(10):3329–3333. doi: 10.1073/pnas.85.10.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González-García C., Ceña V., Keiser H. R., Rojas E. Catecholamine secretion induced by tetraethylammonium from cultured bovine adrenal chromaffin cells. Biochim Biophys Acta. 1993 May 8;1177(1):99–105. doi: 10.1016/0167-4889(93)90164-k. [DOI] [PubMed] [Google Scholar]
- Kawai T., Watanabe M. Blockade of Ca-activated K conductance by apamin in rat sympathetic neurones. Br J Pharmacol. 1986 Jan;87(1):225–232. doi: 10.1111/j.1476-5381.1986.tb10175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kidokoro Y., Miyazaki S., Ozawa S. Acetylcholine-induced membrane depolarization and potential fluctuations in the rat adrenal chromaffin cell. J Physiol. 1982 Mar;324:203–220. doi: 10.1113/jphysiol.1982.sp014107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marty A. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature. 1981 Jun 11;291(5815):497–500. doi: 10.1038/291497a0. [DOI] [PubMed] [Google Scholar]
- Marty A., Neher E. Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol. 1985 Oct;367:117–141. doi: 10.1113/jphysiol.1985.sp015817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nohmi M., Kuba K. (+)-Tubocurarine blocks the Ca2+-dependent K+-channel of the bullfrog sympathetic ganglion cell. Brain Res. 1984 May 28;301(1):146–148. doi: 10.1016/0006-8993(84)90412-8. [DOI] [PubMed] [Google Scholar]
- Orts A., Orellana C., Cantó T., Ceña V., González-García C., García A. G. Inhibition of adrenomedullary catecholamine release by propranolol isomers and clonidine involving mechanisms unrelated to adrenoceptors. Br J Pharmacol. 1987 Dec;92(4):795–801. doi: 10.1111/j.1476-5381.1987.tb11383.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price M., Lee S. C., Deutsch C. Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10171–10175. doi: 10.1073/pnas.86.24.10171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal T., Birch M., Osikowska B., Sever P. S. Changes in plasma noradrenaline concentration following sympathetic stimulation by gradual tilting. Cardiovasc Res. 1978 Mar;12(3):144–147. doi: 10.1093/cvr/12.3.144. [DOI] [PubMed] [Google Scholar]
- Uceda G., Artalejo A. R., López M. G., Abad F., Neher E., García A. G. Ca(2+)-activated K+ channels modulate muscarinic secretion in cat chromaffin cells. J Physiol. 1992 Aug;454:213–230. doi: 10.1113/jphysiol.1992.sp019261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uceda G., Artalejo A. R., de la Fuente M. T., López M. G., Albillos A., Michelena P., García A. G., Montiel C. Modulation by L-type Ca2+ channels and apamin-sensitive K+ channels of muscarinic responses in cat chromaffin cells. Am J Physiol. 1994 May;266(5 Pt 1):C1432–C1439. doi: 10.1152/ajpcell.1994.266.5.C1432. [DOI] [PubMed] [Google Scholar]
- Yarom Y., Sugimori M., Llinás R. Ionic currents and firing patterns of mammalian vagal motoneurons in vitro. Neuroscience. 1985 Dec;16(4):719–737. doi: 10.1016/0306-4522(85)90090-9. [DOI] [PubMed] [Google Scholar]



