Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Jul 15;486(Pt 2):505–516. doi: 10.1113/jphysiol.1995.sp020829

Visceral vasodilatation and somatic vasoconstriction evoked by acid challenge of the rat gastric mucosa: diversity of mechanisms.

C Wachter 1, A Heinemann 1, M Jocic 1, P Holzer 1
PMCID: PMC1156538  PMID: 7473214

Abstract

1. Acid back-diffusion through a disrupted gastric mucosal barrier increases blood flow to the stomach without any change in systemic blood pressure. This study was undertaken to examine the gastric acid-evoked changes in blood flow in a number of visceral and somatic arterial beds and to elucidate the mechanisms which lead to the regionally diverse haemodynamic responses. 2. The gastric mucosa of urethane-anaesthetized rats was challenged with acid by perfusing the stomach with ethanol (15%, to disrupt the gastric mucosal barrier) in 0.15 M HCl. Blood flow was estimated by laser Doppler flowmetry, the hydrogen clearance method or the ultrasonic transit time shift technique. 3. Gastric acid challenge increased blood flow in the gastric mucosa and left gastric artery while blood flow in the femoral artery and skin declined. 4. Afferent nerve stimulation by intragastric administration of capsaicin enhanced blood flow in the left gastric artery but did not diminish blood flow in the femoral artery when compared with the vehicle. 5. The gastric acid-evoked dilatation of the left gastric artery was depressed by acute extrinsic denervation of the stomach, capsaicin-induced ablation of afferent neurones or hexamethonium-induced blockade of autonomic ganglionic transmission. 6. The gastric acid-induced constriction of the femoral artery was attenuated by acute extrinsic denervation of the stomach but left unaltered by capsaicin, hexamethonium, guanethidine, indomethacin, telmisartan (an angiotensin II antagonist), [d(CH2)5(1), Tyr(Me)2, Arg8]-vasopressin (a vasopressin antagonist), bosentan (an endothelin antagonist) and acute ligation of the blood vessels to the adrenal glands. 7. These data show that acid challenge of the gastric mucosa elicits visceral vasodilatation and somatic vasoconstriction via divergent mechanisms. The gastric hyperaemia is brought about by extrinsic vasodilator nerves, whereas the reduction of somatic blood flow seems to be mediated by non-neural, probably humoral, vasoconstrictor messengers that remain to be identified.

Full text

PDF
505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauerfeind P., Hof R., Hof A., Cucala M., Siegrist S., von Ritter C., Fischer J. A., Blum A. L. Effects of hCGRP I and II on gastric blood flow and acid secretion in anesthetized rabbits. Am J Physiol. 1989 Jan;256(1 Pt 1):G145–G149. doi: 10.1152/ajpgi.1989.256.1.G145. [DOI] [PubMed] [Google Scholar]
  2. Bruggeman T. M., Wood J. G., Davenport H. W. Local control of blood flow in the dog's stomach: vasodilatation caused by acid back-diffusion following topical application of salicylic acid. Gastroenterology. 1979 Oct;77(4 Pt 1):736–744. [PubMed] [Google Scholar]
  3. Clozel M., Breu V., Gray G. A., Kalina B., Löffler B. M., Burri K., Cassal J. M., Hirth G., Müller M., Neidhart W. Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J Pharmacol Exp Ther. 1994 Jul;270(1):228–235. [PubMed] [Google Scholar]
  4. Granger D. N., Richardson P. D., Kvietys P. R., Mortillaro N. A. Intestinal blood flow. Gastroenterology. 1980 Apr;78(4):837–863. [PubMed] [Google Scholar]
  5. Green T., Dockray G. J. Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse and guinea-pig. Neuroscience. 1988 Apr;25(1):181–193. doi: 10.1016/0306-4522(88)90017-6. [DOI] [PubMed] [Google Scholar]
  6. Holzer P., Lippe I. T., Amann R. Participation of capsaicin-sensitive afferent neurons in gastric motor inhibition caused by laparotomy and intraperitoneal acid. Neuroscience. 1992;48(3):715–722. doi: 10.1016/0306-4522(92)90414-w. [DOI] [PubMed] [Google Scholar]
  7. Holzer P., Lippe I. T. Gastric mucosal hyperemia due to acid backdiffusion depends on splanchnic nerve activity. Am J Physiol. 1992 Mar;262(3 Pt 1):G505–G509. doi: 10.1152/ajpgi.1992.262.3.G505. [DOI] [PubMed] [Google Scholar]
  8. Holzer P., Lippe I. T., Jocic M., Wachter C., Erb R., Heinemann A. Nitric oxide-dependent and -independent hyperaemia due to calcitonin gene-related peptide in the rat stomach. Br J Pharmacol. 1993 Sep;110(1):404–410. doi: 10.1111/j.1476-5381.1993.tb13824.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holzer P., Lippe I. T. Stimulation of afferent nerve endings by intragastric capsaicin protects against ethanol-induced damage of gastric mucosa. Neuroscience. 1988 Dec;27(3):981–987. doi: 10.1016/0306-4522(88)90201-1. [DOI] [PubMed] [Google Scholar]
  10. Holzer P., Livingston E. H., Guth P. H. Sensory neurons signal for an increase in rat gastric mucosal blood flow in the face of pending acid injury. Gastroenterology. 1991 Aug;101(2):416–423. doi: 10.1016/0016-5085(91)90020-l. [DOI] [PubMed] [Google Scholar]
  11. Holzer P., Livingston E. H., Saria A., Guth P. H. Sensory neurons mediate protective vasodilatation in rat gastric mucosa. Am J Physiol. 1991 Mar;260(3 Pt 1):G363–G370. doi: 10.1152/ajpgi.1991.260.3.G363. [DOI] [PubMed] [Google Scholar]
  12. Holzer P., Wachter C., Jocic M., Heinemann A. Vascular bed-dependent roles of the peptide CGRP and nitric oxide in acid-evoked hyperaemia of the rat stomach. J Physiol. 1994 Nov 1;480(Pt 3):575–585. doi: 10.1113/jphysiol.1994.sp020385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Li D. S., Raybould H. E., Quintero E., Guth P. H. Calcitonin gene-related peptide mediates the gastric hyperemic response to acid back-diffusion. Gastroenterology. 1992 Apr;102(4 Pt 1):1124–1128. [PubMed] [Google Scholar]
  14. Lippe I. T., Holzer P. Participation of endothelium-derived nitric oxide but not prostacyclin in the gastric mucosal hyperaemia due to acid back-diffusion. Br J Pharmacol. 1992 Mar;105(3):708–714. doi: 10.1111/j.1476-5381.1992.tb09043.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lippe I. T., Pabst M. A., Holzer P. Intragastric capsaicin enhances rat gastric acid elimination and mucosal blood flow by afferent nerve stimulation. Br J Pharmacol. 1989 Jan;96(1):91–100. doi: 10.1111/j.1476-5381.1989.tb11788.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Longhurst J. C., Ashton J. H., Iwamoto G. A. Cardiovascular reflexes resulting from capsaicin-stimulated gastric receptors in anesthetized dogs. Circ Res. 1980 Jun;46(6):780–788. doi: 10.1161/01.res.46.6.780. [DOI] [PubMed] [Google Scholar]
  17. Matsumoto J., Takeuchi K., Ueshima K., Okabe S. Role of capsaicin-sensitive afferent neurons in mucosal blood flow response of rat stomach induced by mild irritants. Dig Dis Sci. 1992 Sep;37(9):1336–1344. doi: 10.1007/BF01296001. [DOI] [PubMed] [Google Scholar]
  18. Maxwell R. A. Guanethidine after twenty years: a pharmacologist's perspective. Br J Clin Pharmacol. 1982 Jan;13(1):35–44. doi: 10.1111/j.1365-2125.1982.tb01334.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Raybould H. E., Sternini C., Eysselein V. E., Yoneda M., Holzer P. Selective ablation of spinal afferent neurons containing CGRP attenuates gastric hyperemic response to acid. Peptides. 1992 Mar-Apr;13(2):249–254. doi: 10.1016/0196-9781(92)90104-b. [DOI] [PubMed] [Google Scholar]
  20. Shams H., Peskar B. A., Scheid P. Acid infusion elicits thromboxane A2-mediated effects on respiration and pulmonary hemodynamics in the cat. Respir Physiol. 1988 Feb;71(2):169–183. doi: 10.1016/0034-5687(88)90014-x. [DOI] [PubMed] [Google Scholar]
  21. Stein R. D., Genovesi S., Demarest K. T., Weaver L. C. Capsaicin treatment attenuates the reflex excitation of sympathetic activity caused by chemical stimulation of intestinal afferent nerves. Brain Res. 1986 Nov 5;397(1):145–151. doi: 10.1016/0006-8993(86)91378-8. [DOI] [PubMed] [Google Scholar]
  22. Sternini C. Enteric and visceral afferent CGRP neurons. Targets of innervation and differential expression patterns. Ann N Y Acad Sci. 1992 Jun 30;657:170–186. doi: 10.1111/j.1749-6632.1992.tb22766.x. [DOI] [PubMed] [Google Scholar]
  23. Tepperman B. L., Whittle B. J. Endogenous nitric oxide and sensory neuropeptides interact in the modulation of the rat gastric microcirculation. Br J Pharmacol. 1992 Jan;105(1):171–175. doi: 10.1111/j.1476-5381.1992.tb14230.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Whittle B. J., Lopez-Belmonte J., Moncada S. Regulation of gastric mucosal integrity by endogenous nitric oxide: interactions with prostanoids and sensory neuropeptides in the rat. Br J Pharmacol. 1990 Mar;99(3):607–611. doi: 10.1111/j.1476-5381.1990.tb12977.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Whittle B. J. Mechanisms underlying gastric mucosal damage induced by indomethacin and bile-salts, and the actions of prostaglandins. Br J Pharmacol. 1977 Jul;60(3):455–460. doi: 10.1111/j.1476-5381.1977.tb07522.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wienen W., Hauel N., Van Meel J. C., Narr B., Ries U., Entzeroth M. Pharmacological characterization of the novel nonpeptide angiotensin II receptor antagonist, BIBR 277. Br J Pharmacol. 1993 Sep;110(1):245–252. doi: 10.1111/j.1476-5381.1993.tb13800.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES