Abstract
1. An increased uptake of tryptophan in the brain may increase serotoninergic activity and recently has been suggested to be a cause of fatigue during prolonged exercise. The present study, therefore, investigates whether ingestion of tryptophan or the competing branched-chain amino acids (BCAAs) affect performance. Ten endurance-trained male athletes were studied during cycle exercise at 70-75% maximal power output, while ingesting, ad random and double-blind, drinks that contained 6% sucrose (control) or 6% sucrose supplemented with (1) tryptophan (3 g l-1), (2) a low dose of BCAA (6 g l-1) or (3) a high dose of BCAA (18 g l-1). 2. These treatments greatly increased the plasma concentration of the respective amino acids. Using the kinetic parameters of transport of human brain capillaries, BCAA supplements were estimated to reduce brain tryptophan uptake at exhaustion by 8-12%, while tryptophan ingestion caused a 7- to 20-fold increase. Exercise time to exhaustion was not different between treatments (122 +/- 3 min). 3. The data suggest that manipulation of tryptophan supply to the brain either has no additional effect upon serotoninergic activity during prolonged exhaustive exercise or that manipulation of serotoninergic activity functionally does not contribute to mechanisms of fatigue.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey S. P., Davis J. M., Ahlborn E. N. Serotonergic agonists and antagonists affect endurance performance in the rat. Int J Sports Med. 1993 Aug;14(6):330–333. doi: 10.1055/s-2007-1021187. [DOI] [PubMed] [Google Scholar]
- Blomstrand E., Celsing F., Newsholme E. A. Changes in plasma concentrations of aromatic and branched-chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol Scand. 1988 May;133(1):115–121. doi: 10.1111/j.1748-1716.1988.tb08388.x. [DOI] [PubMed] [Google Scholar]
- Blomstrand E., Hassmén P., Ekblom B., Newsholme E. A. Administration of branched-chain amino acids during sustained exercise--effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol Occup Physiol. 1991;63(2):83–88. doi: 10.1007/BF00235174. [DOI] [PubMed] [Google Scholar]
- Chaouloff F., Elghozi J. L., Guezennec Y., Laude D. Effects of conditioned running on plasma, liver and brain tryptophan and on brain 5-hydroxytryptamine metabolism of the rat. Br J Pharmacol. 1985 Sep;86(1):33–41. doi: 10.1111/j.1476-5381.1985.tb09432.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaouloff F., Kennett G. A., Serrurrier B., Merino D., Curzon G. Amino acid analysis demonstrates that increased plasma free tryptophan causes the increase of brain tryptophan during exercise in the rat. J Neurochem. 1986 May;46(5):1647–1650. doi: 10.1111/j.1471-4159.1986.tb01789.x. [DOI] [PubMed] [Google Scholar]
- Chaouloff F., Laude D., Guezennec Y., Elghozi J. L. Motor activity increases tryptophan, 5-hydroxyindoleacetic acid, and homovanillic acid in ventricular cerebrospinal fluid of the conscious rat. J Neurochem. 1986 Apr;46(4):1313–1316. doi: 10.1111/j.1471-4159.1986.tb00656.x. [DOI] [PubMed] [Google Scholar]
- Davis J. M., Bailey S. P., Woods J. A., Galiano F. J., Hamilton M. T., Bartoli W. P. Effects of carbohydrate feedings on plasma free tryptophan and branched-chain amino acids during prolonged cycling. Eur J Appl Physiol Occup Physiol. 1992;65(6):513–519. doi: 10.1007/BF00602357. [DOI] [PubMed] [Google Scholar]
- Fernstrom M. H., Fernstrom J. D. Large changes in serum free tryptophan levels do not alter brain tryptophan levels: studies in streptozotocin-diabetic rats. Life Sci. 1993;52(11):907–916. doi: 10.1016/0024-3205(93)90525-8. [DOI] [PubMed] [Google Scholar]
- Grahame-Smith D. G. Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. J Neurochem. 1971 Jun;18(6):1053–1066. doi: 10.1111/j.1471-4159.1971.tb12034.x. [DOI] [PubMed] [Google Scholar]
- Hargreaves K. M., Pardridge W. M. Neutral amino acid transport at the human blood-brain barrier. J Biol Chem. 1988 Dec 25;263(36):19392–19397. [PubMed] [Google Scholar]
- Hermansen L., Hultman E., Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967 Oct-Nov;71(2):129–139. doi: 10.1111/j.1748-1716.1967.tb03719.x. [DOI] [PubMed] [Google Scholar]
- Kasperek G. J., Dohm G. L., Snider R. D. Activation of branched-chain keto acid dehydrogenase by exercise. Am J Physiol. 1985 Feb;248(2 Pt 2):R166–R171. doi: 10.1152/ajpregu.1985.248.2.R166. [DOI] [PubMed] [Google Scholar]
- Knott P. J., Curzon G. Free tryptophan in plasma and brain tryptophan metabolism. Nature. 1972 Oct 20;239(5373):452–453. doi: 10.1038/239452a0. [DOI] [PubMed] [Google Scholar]
- Kuipers H., Keizer H. A., Brouns F., Saris W. H. Carbohydrate feeding and glycogen synthesis during exercise in man. Pflugers Arch. 1987 Dec;410(6):652–656. doi: 10.1007/BF00581327. [DOI] [PubMed] [Google Scholar]
- MacLean D. A., Graham T. E. Branched-chain amino acid supplementation augments plasma ammonia responses during exercise in humans. J Appl Physiol (1985) 1993 Jun;74(6):2711–2717. doi: 10.1152/jappl.1993.74.6.2711. [DOI] [PubMed] [Google Scholar]
- Madras B. K., Cohen E. L., Messing R., Munro H. N., Wurtman R. J. Relevance of free tryptophan in serum to tissue tryptophan concentrations. Metabolism. 1974 Dec;23(12):1107–1116. doi: 10.1016/0026-0495(74)90027-4. [DOI] [PubMed] [Google Scholar]
- Marsden C. A., Conti J., Strope E., Curzon G., Adams R. N. Monitoring 5-hydroxytryptamine release in the brain of the freely moving unanaesthetized rat using in vivo voltammetry. Brain Res. 1979 Jul 27;171(1):85–99. doi: 10.1016/0006-8993(79)90734-0. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M. Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev. 1983 Oct;63(4):1481–1535. doi: 10.1152/physrev.1983.63.4.1481. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M., Fierer G. Transport of tryptophan into brain from the circulating, albumin-bound pool in rats and in rabbits. J Neurochem. 1990 Mar;54(3):971–976. doi: 10.1111/j.1471-4159.1990.tb02345.x. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M. Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J Neurochem. 1977 Jan;28(1):103–108. doi: 10.1111/j.1471-4159.1977.tb07714.x. [DOI] [PubMed] [Google Scholar]
- Verger P., Aymard P., Cynobert L., Anton G., Luigi R. Effects of administration of branched-chain amino acids vs. glucose during acute exercise in the rat. Physiol Behav. 1994 Mar;55(3):523–526. doi: 10.1016/0031-9384(94)90111-2. [DOI] [PubMed] [Google Scholar]
- Wagenmakers A. J., Beckers E. J., Brouns F., Kuipers H., Soeters P. B., van der Vusse G. J., Saris W. H. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am J Physiol. 1991 Jun;260(6 Pt 1):E883–E890. doi: 10.1152/ajpendo.1991.260.6.E883. [DOI] [PubMed] [Google Scholar]
- Wagenmakers A. J., Coakley J. H., Edwards R. H. Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle's disease. Int J Sports Med. 1990 May;11 (Suppl 2):S101–S113. doi: 10.1055/s-2007-1024861. [DOI] [PubMed] [Google Scholar]
- Wilson W. M., Maughan R. J. Evidence for a possible role of 5-hydroxytryptamine in the genesis of fatigue in man: administration of paroxetine, a 5-HT re-uptake inhibitor, reduces the capacity to perform prolonged exercise. Exp Physiol. 1992 Nov;77(6):921–924. doi: 10.1113/expphysiol.1992.sp003660. [DOI] [PubMed] [Google Scholar]
- Yuwiler A., Oldendorf W. H., Geller E., Braun L. Effect of albumin binding and amino acid competition on tryptophan uptake into brain. J Neurochem. 1977 May;28(5):1015–1023. doi: 10.1111/j.1471-4159.1977.tb10664.x. [DOI] [PubMed] [Google Scholar]
- van Eijk H. M., van der Heijden M. A., van Berlo C. L., Soeters P. B. Fully automated liquid-chromatographic determination of amino acids. Clin Chem. 1988 Dec;34(12):2510–2513. [PubMed] [Google Scholar]
