Abstract
1. We have measured changes in cell volume, membrane potential and ionic currents in distal nephron A6 cells following a challenge with hypotonic solutions (HTS). 2. The volume increase induced by HTS is compensated by a regulatory volume decrease (RVD), which is inhibited by both 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and quinine. Quinine (500 microM) completely blocked RVD, whereas 100 microM NPPB delayed and attenuated RVD. 3. The resting potential in A6 cells was -52.3 +/- 4.8 mV (n = 53), and shifted to -35.1 +/- 2.2 mV (n = 33) during HTS. 4. Resting membrane current in A6 cells was 0.35 +/- 0.12 pA pF-1 at -80 mV and 0.51 +/- 0.16 pA pF-1 at +80 mV (n = 5). During cell swelling these values increased to 11.5 +/- 1.1 and 29.3 +/- 2.8 pA pF-1 (n = 29), respectively. 5. Quinine (500 microM) completely blocked the HTS-activated current at -15 mV, the reversal potential for Cl- currents, but exerted only a small block at -100 mV (K+ equilibrium potential). NPPB (100 microM) inhibited the current at both potentials almost to the same extent. The HTS-induced net current reversed at -41 +/- 2.5 mV (n = 15), which is close to the measured resting potential during HTS. 6. The quinine-insensitive current reversed near the Cl- equilibrium potential. The quinine-sensitive current reversed near the K+ equilibrium potential. The respective conductances activated by HTS at the zero-current potential were 2.1 +/- 0.7 nS for K+ and 5.2 +/- 1.3 nS for Cl- (n = 15). 7. Single channel analysis unveiled activation of at least two different channels during HTS. A 36 pS channel reversing at the Cl- equilibrium potential showed increased open probability at depolarized potentials. HTS also activated a K+ channel with a 29 pS conductance in high-K+ extracellular solutions (130 mM) or 12 pS in 2.5 mM K+. 8. This coactivation of K+ and Cl- channels shifts the membrane potential towards a value between EK and ECl (the reversal potentials for K+ and Cl-), where a net efflux of Cl- (Cl- inward current) and K+ (K+ outward current) under zero-current conditions occurs. Block of either the K+ or the Cl- conductance will shift the zero-current potential towards the equilibrium potential of the unblocked channel, preventing net efflux of osmolytes and RVD. This coactivation of K+ and Cl- currents causes a shift of osmolytes out of the cells, which almost completely accounts for the observed RVD.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banderali U., Roy G. Activation of K+ and Cl- channels in MDCK cells during volume regulation in hypotonic media. J Membr Biol. 1992 Mar;126(3):219–234. doi: 10.1007/BF00232319. [DOI] [PubMed] [Google Scholar]
- Banderali U., Roy G. Anion channels for amino acids in MDCK cells. Am J Physiol. 1992 Dec;263(6 Pt 1):C1200–C1207. doi: 10.1152/ajpcell.1992.263.6.C1200. [DOI] [PubMed] [Google Scholar]
- Broillet M. C., Horisberger J. D. Basolateral membrane potassium conductance of A6 cells. J Membr Biol. 1991 Oct;124(1):1–12. doi: 10.1007/BF01871359. [DOI] [PubMed] [Google Scholar]
- Butt A. G., Clapp W. L., Frizzell R. A. Potassium conductances in tracheal epithelium activated by secretion and cell swelling. Am J Physiol. 1990 Apr;258(4 Pt 1):C630–C638. doi: 10.1152/ajpcell.1990.258.4.C630. [DOI] [PubMed] [Google Scholar]
- Christensen O., Hoffmann E. K. Cell swelling activates K+ and Cl- channels as well as nonselective, stretch-activated cation channels in Ehrlich ascites tumor cells. J Membr Biol. 1992 Jul;129(1):13–36. doi: 10.1007/BF00232052. [DOI] [PubMed] [Google Scholar]
- De Smet P., Oike M., Droogmans G., Van Driessche W., Nilius B. Responses of endothelial cells to hypotonic solutions: lack of regulatory volume decrease. Pflugers Arch. 1994 Aug;428(1):94–96. doi: 10.1007/BF00374757. [DOI] [PubMed] [Google Scholar]
- Deutsch C., Chen L. Q. Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10036–10040. doi: 10.1073/pnas.90.21.10036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diener M., Nobles M., Rummel W. Activation of basolateral Cl- channels in the rat colonic epithelium during regulatory volume decrease. Pflugers Arch. 1992 Sep;421(6):530–538. doi: 10.1007/BF00375048. [DOI] [PubMed] [Google Scholar]
- Ehrenfeld J., Raschi C., Brochiero E. Basolateral potassium membrane permeability of A6 cells and cell volume regulation. J Membr Biol. 1994 Mar;138(3):181–195. doi: 10.1007/BF00232791. [DOI] [PubMed] [Google Scholar]
- Filipovic D., Sackin H. Stretch- and volume-activated channels in isolated proximal tubule cells. Am J Physiol. 1992 May;262(5 Pt 2):F857–F870. doi: 10.1152/ajprenal.1992.262.5.F857. [DOI] [PubMed] [Google Scholar]
- Illek B., Fischer H., Kreusel K. M., Hegel U., Clauss W. Volume-sensitive basolateral K+ channels in HT-29/B6 cells: block by lidocaine, quinidine, NPPB, and Ba2+. Am J Physiol. 1992 Sep;263(3 Pt 1):C674–C683. doi: 10.1152/ajpcell.1992.263.3.C674. [DOI] [PubMed] [Google Scholar]
- Kunzelmann K., Kubitz R., Grolik M., Warth R., Greger R. Small-conductance Cl- channels in HT29 cells: activation by Ca2+, hypotonic cell swelling and 8-Br-cGMP. Pflugers Arch. 1992 Jun;421(2-3):238–246. doi: 10.1007/BF00374833. [DOI] [PubMed] [Google Scholar]
- Lambert I. H., Hoffmann E. K. Regulation of taurine transport in Ehrlich ascites tumor cells. J Membr Biol. 1993 Jan;131(1):67–79. doi: 10.1007/BF02258535. [DOI] [PubMed] [Google Scholar]
- Lang F., Ritter M., Völkl H., Häussinger D. The biological significance of cell volume. Ren Physiol Biochem. 1993 Jan-Apr;16(1-2):48–65. doi: 10.1159/000173751. [DOI] [PubMed] [Google Scholar]
- Lewis R. S., Ross P. E., Cahalan M. D. Chloride channels activated by osmotic stress in T lymphocytes. J Gen Physiol. 1993 Jun;101(6):801–826. doi: 10.1085/jgp.101.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarty N. A., O'Neil R. G. Calcium signaling in cell volume regulation. Physiol Rev. 1992 Oct;72(4):1037–1061. doi: 10.1152/physrev.1992.72.4.1037. [DOI] [PubMed] [Google Scholar]
- Nilius B., Oike M., Zahradnik I., Droogmans G. Activation of a Cl- current by hypotonic volume increase in human endothelial cells. J Gen Physiol. 1994 May;103(5):787–805. doi: 10.1085/jgp.103.5.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilius B., Sehrer J., Viana F., De Greef C., Raeymaekers L., Eggermont J., Droogmans G. Volume-activated Cl- currents in different mammalian non-excitable cell types. Pflugers Arch. 1994 Oct;428(3-4):364–371. doi: 10.1007/BF00724520. [DOI] [PubMed] [Google Scholar]
- Parker J. C. In defense of cell volume? Am J Physiol. 1993 Nov;265(5 Pt 1):C1191–C1200. doi: 10.1152/ajpcell.1993.265.5.C1191. [DOI] [PubMed] [Google Scholar]
- Rasmusson R. L., Davis D. G., Lieberman M. Amino acid loss during volume regulatory decrease in cultured chick heart cells. Am J Physiol. 1993 Jan;264(1 Pt 1):C136–C145. doi: 10.1152/ajpcell.1993.264.1.C136. [DOI] [PubMed] [Google Scholar]
- Roy G., Banderali U. Channels for ions and amino acids in kidney cultured cells (MDCK) during volume regulation. J Exp Zool. 1994 Feb 1;268(2):121–126. doi: 10.1002/jez.1402680208. [DOI] [PubMed] [Google Scholar]
- Roy G., Malo C. Activation of amino acid diffusion by a volume increase in cultured kidney (MDCK) cells. J Membr Biol. 1992 Oct;130(1):83–90. doi: 10.1007/BF00233740. [DOI] [PubMed] [Google Scholar]
- Sandford C. A., Sweiry J. H., Jenkinson D. H. Properties of a cell volume-sensitive potassium conductance in isolated guinea-pig and rat hepatocytes. J Physiol. 1992 Feb;447:133–148. doi: 10.1113/jphysiol.1992.sp018995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwiebert E. M., Mills J. W., Stanton B. A. Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem. 1994 Mar 11;269(10):7081–7089. [PubMed] [Google Scholar]
- Van Driessche W., De Smet P., Raskin G. An automatic monitoring system for epithelial cell height. Pflugers Arch. 1993 Oct;425(1-2):164–171. doi: 10.1007/BF00374517. [DOI] [PubMed] [Google Scholar]