Abstract
1. To assess the nature of the underlying mechanism of noradrenaline-induced increase of Cl- conductances in hepatocytes, macroscopic and unitary currents through noradrenaline-induced Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, cell-attached and excised inside-out configurations of the patch-clamp technique. 2. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 0.1 microM, bath application of noradrenaline activated the time-independent membrane currents under whole-cell voltage-clamp conditions. The current was similarly activated by phorbol ester (PMA), an activator of protein kinase C (PKC), while a specific protein kinase C inhibitor, H-9, reversed PMA activation of the current. The inactive phorbol ester, 4 alpha-phorbol 12-myristate, 13-acetate (alpha PMA), failed to activate the channel. 3. The reversal potential of the PMA-activated current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration, indicating that the current was Cl- selective. Bath application of 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) partially inhibited both the noradrenaline- and PMA-induced currents. 4. In single channel recordings from cell-attached patches, bath application of noradrenaline or PMA induced unitary current activity, the averaged slope conductance of which was 10.1 +/- 1.5 pS (mean +/- S.D.; n = 12) in the noradrenaline-induced current and 9.7 +/- 1.3 pS (n = 7) in the PMA-induced current. The open time distribution was moderately well fitted by a single exponential function with mean open lifetime of 88.5 +/- 10.6 ms (n = 10), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 24.4 +/- 5.8 ms (n = 10) and for the slow component of 316.9 +/- 49.2 ms (n = 10). 5. Bath application of purified PKC to excised inside-out patches activated the channel. The PKC selective inhibitor, PKC(19-36), and DIDS inhibited the PKC-activated channel. 6. These results suggest that PKC can phosphorylate the channel protein or a related structure leading to the activation of Cl- channels in guinea-pig hepatocytes.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barthelson R. A., Jacoby D. B., Widdicombe J. H. Regulation of chloride secretion in dog tracheal epithelium by protein kinase C. Am J Physiol. 1987 Dec;253(6 Pt 1):C802–C808. doi: 10.1152/ajpcell.1987.253.6.C802. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
- Bialojan C., Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988 Nov 15;256(1):283–290. doi: 10.1042/bj2560283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess G. M., Claret M., Jenkinson D. H. Effects of catecholamines, ATP and ionophore A23187 on potassium and calcium movements in isolated hepatocytes. Nature. 1979 Jun 7;279(5713):544–546. doi: 10.1038/279544a0. [DOI] [PubMed] [Google Scholar]
- Burgess G. M., Claret M., Jenkinson D. H. Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells. J Physiol. 1981 Aug;317:67–90. doi: 10.1113/jphysiol.1981.sp013814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess G. M., Godfrey P. P., McKinney J. S., Berridge M. J., Irvine R. F., Putney J. W., Jr The second messenger linking receptor activation to internal Ca release in liver. Nature. 1984 May 3;309(5963):63–66. doi: 10.1038/309063a0. [DOI] [PubMed] [Google Scholar]
- Burgess G. M., Irvine R. F., Berridge M. J., McKinney J. S., Putney J. W., Jr Actions of inositol phosphates on Ca2+ pools in guinea-pig hepatocytes. Biochem J. 1984 Dec 15;224(3):741–746. doi: 10.1042/bj2240741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capiod T., Field A. C., Ogden D. C., Sandford C. A. Internal perfusion of guinea-pig hepatocytes with buffered Ca2+ or inositol 1,4,5-trisphosphate mimics noradrenaline activation of K+ and Cl- conductances. FEBS Lett. 1987 Jun 15;217(2):247–252. doi: 10.1016/0014-5793(87)80672-5. [DOI] [PubMed] [Google Scholar]
- Capiod T., Ogden D. C. Properties of membrane ion conductances evoked by hormonal stimulation of guinea-pig and rabbit isolated hepatocytes. Proc R Soc Lond B Biol Sci. 1989 Mar 22;236(1283):187–201. doi: 10.1098/rspb.1989.0020. [DOI] [PubMed] [Google Scholar]
- Egashira K. Biphasic response to noradrenaline in the guinea pig liver cells. Jpn J Physiol. 1980;30(1):81–91. doi: 10.2170/jjphysiol.30.81. [DOI] [PubMed] [Google Scholar]
- Ehara T., Matsuura H. Single-channel study of the cyclic AMP-regulated chloride current in guinea-pig ventricular myocytes. J Physiol. 1993 May;464:307–320. doi: 10.1113/jphysiol.1993.sp019636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
- Field A. C., Jenkinson D. H. The effect of noradrenaline on the ion permeability of isolated mammalian hepatocytes, studied by intracellular recording. J Physiol. 1987 Nov;392:493–512. doi: 10.1113/jphysiol.1987.sp016793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Díaz J. F. Whole-cell and single channel K+ and Cl- currents in epithelial cells of frog skin. J Gen Physiol. 1991 Jul;98(1):131–161. doi: 10.1085/jgp.98.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graf J., Gautam A., Boyer J. L. Isolated rat hepatocyte couplets: a primary secretory unit for electrophysiologic studies of bile secretory function. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6516–6520. doi: 10.1073/pnas.81.20.6516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddad P., Beck J. S., Boyer J. L., Graf J. Role of chloride ions in liver cell volume regulation. Am J Physiol. 1991 Aug;261(2 Pt 1):G340–G348. doi: 10.1152/ajpgi.1991.261.2.G340. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Haylett D. G., Jenkinson D. H. Effects of noradrenaline on potassium reflux, membrane potential and electrolyte levels in tissue slices prepared from guinea-pig liver. J Physiol. 1972 Sep;225(3):721–750. doi: 10.1113/jphysiol.1972.sp009966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haylett D. G., Jenkinson D. H. The receptors concerned in the actions of catecholamines on glucose release, membrane potential and ion movements in guinea-pig liver. J Physiol. 1972 Sep;225(3):751–772. doi: 10.1113/jphysiol.1972.sp009967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- House C., Kemp B. E. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science. 1987 Dec 18;238(4834):1726–1728. doi: 10.1126/science.3686012. [DOI] [PubMed] [Google Scholar]
- Kolb H. A., Adam G. Regulation of ion permeabilities of isolated rat liver cells by external calcium concentration and temperature. J Membr Biol. 1976 Mar 18;26(2-3):121–151. doi: 10.1007/BF01868870. [DOI] [PubMed] [Google Scholar]
- Koumi S., Sato R., Aramaki T. Characterization of the calcium-activated chloride channel in isolated guinea-pig hepatocytes. J Gen Physiol. 1994 Aug;104(2):357–373. doi: 10.1085/jgp.104.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koumi S., Sato R., Horikawa T., Aramaki T., Okumura H. Characterization of the calcium-sensitive voltage-gated delayed rectifier potassium channel in isolated guinea pig hepatocytes. J Gen Physiol. 1994 Jul;104(1):147–171. doi: 10.1085/jgp.104.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCann J. D., Li M., Welsh M. J. Identification and regulation of whole-cell chloride currents in airway epithelium. J Gen Physiol. 1989 Dec;94(6):1015–1036. doi: 10.1085/jgp.94.6.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
- Ogden D. C., Capiod T., Walker J. W., Trentham D. R. Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca2+ in guinea-pig isolated hepatocytes. J Physiol. 1990 Mar;422:585–602. doi: 10.1113/jphysiol.1990.sp018002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandford C. A., Sweiry J. H., Jenkinson D. H. Properties of a cell volume-sensitive potassium conductance in isolated guinea-pig and rat hepatocytes. J Physiol. 1992 Feb;447:133–148. doi: 10.1113/jphysiol.1992.sp018995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streb H., Irvine R. F., Berridge M. J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983 Nov 3;306(5938):67–69. doi: 10.1038/306067a0. [DOI] [PubMed] [Google Scholar]
- Suzuki M., Morita T., Hanaoka K., Kawaguchi Y., Sakai O. A Cl- channel activated by parathyroid hormone in rabbit renal proximal tubule cells. J Clin Invest. 1991 Sep;88(3):735–742. doi: 10.1172/JCI115370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss S. J., Putney J. W., Jr Does calcium mediate the increase in potassium permeability due to phenylephrine or angiotensin II in the liver? J Pharmacol Exp Ther. 1978 Dec;207(3):669–676. [PubMed] [Google Scholar]
- Woodgett J. R., Hunter T. Isolation and characterization of two distinct forms of protein kinase C. J Biol Chem. 1987 Apr 5;262(10):4836–4843. [PubMed] [Google Scholar]
- Zygmunt A. C., Gibbons W. R. Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res. 1991 Feb;68(2):424–437. doi: 10.1161/01.res.68.2.424. [DOI] [PubMed] [Google Scholar]






