Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Oct 31:2024.10.30.620661. [Version 1] doi: 10.1101/2024.10.30.620661

The STRIPAK complex is required for radial sorting and laminin receptor expression in Schwann cells

Michael R Weaver, Dominika Shkoruta, Marta Pellegatta, Caterina Berti, Marilena Palmisano, Scott Ferguson, Edward Hurley, Julianne French, Shreya Patel, Sophie Belin, Matthias Selbach, Florian Ernst Paul, Fraser Sim, Yannick Poitelon, M Laura Feltri
PMCID: PMC11565846  PMID: 39554194

ABSTRACT

During peripheral nervous system development, Schwann cells undergo Rac1-dependent cytoskeletal reorganization as they insert cytoplasmic extensions into axon bundles to radially sort, ensheath, and myelinate individual axons. However, our understanding of the direct effectors targeted by Rac1 is limited. Here, we demonstrate that striatin-3 and MOB4 are novel Rac1 interactors. We show that, similar to Rac1-null Schwann cells, Schwann cell specific ablation of striatin-3 causes defects in lamellipodia formation. In addition, conditional Schwann cell knockout of multiple striatin proteins presents a severe delay in radial sorting. Finally, we demonstrate here that deletion of Rac1 or striatin-1/3 in Schwann cells causes defects in Hippo pathway regulation, phosphorylation of the Hippo pathway effectors YAP and TAZ, and expression of genes co-regulated by YAP and TAZ, such as extracellular matrix receptors. In summary, our results indicate that striatin-3 is a novel Rac1 interactor, show that striatin proteins are required for peripheral nervous system development, and reveal a role for Rac1 in regulation of the Hippo pathway in Schwann cells.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES