Abstract
1. Using confocal microscopy, the rate of fluid absorption into isolated perifused descending rat colonic crypt lumens is estimated from the concentration polarization and distribution of fluorescein sulphonate (FS) and fluorescein isothiocyanate-dextran (FITC-dextran; molecular weight, 10,000) within the crypt lumens and pericryptal fluid. 2. The probe dyes enter the crypt via the luminal opening, are concentrated in the lumen, then escape into the pericryptal space via the paracellular spaces spanning the crypt wall. 3. FITC-dextran is maximally accumulated at a luminal depth of 60 microns to 5 times the concentration at the crypt opening (p < 0.001) and penetrates 150-200 microns along the lumen. FS is maximally accumulated within crypt lumen close to the opening. At crypt luminal depths 10-60 microns from the opening FS is accumulated by a factor of 1.5-2.0 above that found in HgCl2-treated tissue (p < 0.001). 4. Dye enters the crypt lumen slowly from the basal side, but from this side does not accumulate above the bathing solution concentration. 5. HgCl2 (20 microM) or theophylline (10 mM) completely inhibit concentrative accumulation of FITC-dextran and FS within the crypts and pericryptal space (p < 0.001). 6. Computer simulation of the dye uptake indicates that the rate of water flow into the crypt luminal opening is 1 x 10(-3) cm s-1 which is equivalent to 15 microliters (cm mucosa)-2 h-1. Approximately 75% of the fluid entering the crypt is abosrbed across the proximal 50 microns of crypt wall as a consequence of the large osmotic pressure gradient between the pericryptal and crypt luminal solutions. A pericryptal diffusion barrier with lower permeability than that across the crypt wall is required to simulate dye accumulation in the pericryptal space. Differences between FITC-dextran and FS accumulation are explained by the lower diffusion coefficient within the crypt lumen, and lower crypt wall permeability of FITC-dextran.
Full text
PDF
















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agre P., Preston G. M., Smith B. L., Jung J. S., Raina S., Moon C., Guggino W. B., Nielsen S. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol. 1993 Oct;265(4 Pt 2):F463–F476. doi: 10.1152/ajprenal.1993.265.4.F463. [DOI] [PubMed] [Google Scholar]
- Barry P. H., Diamond J. M. Effects of unstirred layers on membrane phenomena. Physiol Rev. 1984 Jul;64(3):763–872. doi: 10.1152/physrev.1984.64.3.763. [DOI] [PubMed] [Google Scholar]
- Bleakman D., Naftalin R. J. Hypertonic fluid absorption from rabbit descending colon in vitro. Am J Physiol. 1990 Mar;258(3 Pt 1):G377–G390. doi: 10.1152/ajpgi.1990.258.3.G377. [DOI] [PubMed] [Google Scholar]
- Diener M., Gartmann V. Effect of somatostatin on cell volume, Cl- currents, and transepithelial Cl- transport in rat distal colon. Am J Physiol. 1994 Jun;266(6 Pt 1):G1043–G1052. doi: 10.1152/ajpgi.1994.266.6.G1043. [DOI] [PubMed] [Google Scholar]
- Goodlad R. A., Lee C. Y., Wright N. A. Colonic cell proliferation and growth fraction in young, adult and old rats. Virchows Arch B Cell Pathol Incl Mol Pathol. 1992;61(6):415–417. doi: 10.1007/BF02890445. [DOI] [PubMed] [Google Scholar]
- Hasegawa H., Lian S. C., Finkbeiner W. E., Verkman A. S. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am J Physiol. 1994 Apr;266(4 Pt 1):C893–C903. doi: 10.1152/ajpcell.1994.266.4.C893. [DOI] [PubMed] [Google Scholar]
- Hecker J. F., Grovum W. L. Rates of passage of digesta and water absorption along the larg intestines of sheep, cows and pigs. Aust J Biol Sci. 1975 Apr;28(2):161–167. doi: 10.1071/bi9750161. [DOI] [PubMed] [Google Scholar]
- Holtug K., Shipley A., Dantzer V., Sten-Knudsen O., Skadhauge E. Localization of sodium absorption and chloride secretion in an intestinal epithelium. J Membr Biol. 1991 Jun;122(3):215–229. doi: 10.1007/BF01871422. [DOI] [PubMed] [Google Scholar]
- Joyce N. C., Haire M. F., Palade G. E. Morphologic and biochemical evidence for a contractile cell network within the rat intestinal mucosa. Gastroenterology. 1987 Jan;92(1):68–81. doi: 10.1016/0016-5085(87)90841-9. [DOI] [PubMed] [Google Scholar]
- Köckerling A., Sorgenfrei D., Fromm M. Electrogenic Na+ absorption of rat distal colon is confined to surface epithelium: a voltage-scanning study. Am J Physiol. 1993 May;264(5 Pt 1):C1285–C1293. doi: 10.1152/ajpcell.1993.264.5.C1285. [DOI] [PubMed] [Google Scholar]
- McKie A. T., Goecke I. A., Naftalin R. J. Comparison of fluid absorption by bovine and ovine descending colon in vitro. Am J Physiol. 1991 Sep;261(3 Pt 1):G433–G442. doi: 10.1152/ajpgi.1991.261.3.G433. [DOI] [PubMed] [Google Scholar]
- McKie A. T., Powrie W., Naftalin R. J. Mechanical aspects of rabbit fecal dehydration. Am J Physiol. 1990 Mar;258(3 Pt 1):G391–G394. doi: 10.1152/ajpgi.1990.258.3.G391. [DOI] [PubMed] [Google Scholar]
- Mendizabal M. V., Naftalin R. J. Exposure of rat colonic mucosa to human semen in vivo induces mucosal cytolysis, abolishes fluid absorption and raises paracellular permeability. Clin Sci (Lond) 1992 Mar;82(3):277–282. doi: 10.1042/cs0820277. [DOI] [PubMed] [Google Scholar]
- Naftalin R. J., Pedley K. C. Video enhanced imaging of the fluorescent Na+ probe SBFI indicates that colonic crypts absorb fluid by generating a hypertonic interstitial fluid. FEBS Lett. 1990 Jan 29;260(2):187–194. doi: 10.1016/0014-5793(90)80100-w. [DOI] [PubMed] [Google Scholar]
- Pedley K. C., Naftalin R. J. Evidence from fluorescence microscopy and comparative studies that rat, ovine and bovine colonic crypts are absorptive. J Physiol. 1993 Jan;460:525–547. doi: 10.1113/jphysiol.1993.sp019485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh M. J., Smith P. L., Fromm M., Frizzell R. A. Crypts are the site of intestinal fluid and electrolyte secretion. Science. 1982 Dec 17;218(4578):1219–1221. doi: 10.1126/science.6293054. [DOI] [PubMed] [Google Scholar]
- Wiener H., Turnheim K., van Os C. H. Rabbit distal colon epithelium: I. Isolation and characterization of basolateral plasma membrane vesicles from surface and crypt cells. J Membr Biol. 1989 Sep;110(2):147–162. doi: 10.1007/BF01869470. [DOI] [PubMed] [Google Scholar]
- Zammit P. S., Mendizabal M., Naftalin R. J. Effects on fluid and Na+ flux of varying luminal hydraulic resistance in rat colon in vivo. J Physiol. 1994 Jun 15;477(Pt 3):539–548. doi: 10.1113/jphysiol.1994.sp020214. [DOI] [PMC free article] [PubMed] [Google Scholar]








