Abstract
1. [Na+]o-dependent Ca2+ efflux (forward Na(+)-Ca2+ exchange), [32P]ATP wash-out curves and [ATP] were measured in internally dialysed squid giant axons at 17-18 degrees C. 2. We found that dialysing squid axons without ATP and with [Ca2+]i around 1 microM the basal levels of the [Na+]o-dependent Ca2+ efflux were significantly higher in the presence of N omega-phosphoarginine (PA). Phosphocreatine, a related phosphagen, is without effect. 3. PA stimulation of the Na(+)-Ca2+ exchange occurs in the complete absence of ATP (< 1 microM), being independent of, and additive to, the ATP-stimulated [Na+]o-dependent Ca2+ efflux. PA stimulation of [Na+]o-dependent Ca2+ efflux is fully and rapidly reversible with a Km around 7.7 mM. Activation by saturating [PA] is equivalent in magnitude to that of ATP. 4. PA stimulation of Na(+)-Ca2+ exchange is markedly dependent on intracellular Ca2+ and Mg2+ ions. Below 0.5 microM Ca2+i PA effect is negligible, becoming noticeable between 0.8 and 2 microM. In addition, Ca2+i considerably increases the rate at which PA activates the Na(+)-Ca2+ exchange. Although there is no absolute requirement of the PA effect for Mg2+ ions, this divalent cation largely stimulates the PA effect. 5. This work demonstrates, for the first time, the presence in squid axons of a new form of metabolic regulation of the Na(+)-Ca2+ exchange directly and solely related to PA and different from that of MgATP. This novel mechanism is likely to play a physiological role in Ca2+ extrusion through the Na(+)-Ca2+ exchanger, particularly at micromolar [Ca2+]i.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Glitsch H. G. Voltage-dependent changes in the permeability of nerve membranes to calcium and other divalent cations. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):389–409. doi: 10.1098/rstb.1975.0018. [DOI] [PubMed] [Google Scholar]
- Beaugé L., Di Polo R. The effects of ATP on the interactions between monovalent cations and the sodium pump in dialysed squid axons. J Physiol. 1981 May;314:457–480. doi: 10.1113/jphysiol.1981.sp013719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P., Santiago E. M. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J. 1977 Oct;20(1):79–111. doi: 10.1016/S0006-3495(77)85538-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinley F. J., Jr, Mullins L. J. Sodium extrusion by internally dialyzed squid axons. J Gen Physiol. 1967 Nov;50(10):2303–2331. doi: 10.1085/jgp.50.10.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CALDWELL P. C., HODGKIN A. L., KEYNES R. D., SHAW T. I. Partial inhibition of the active transport of cations in the giant axons of Loligo. J Physiol. 1960 Jul;152:591–600. doi: 10.1113/jphysiol.1960.sp006510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen C. C., Bruegger B. B., Kern C. W., Lin Y. C., Halpern R. M., Smith R. A. Phosphorylation of nuclear proteins in rat regenerating liver. Biochemistry. 1977 Nov 1;16(22):4852–4855. doi: 10.1021/bi00641a016. [DOI] [PubMed] [Google Scholar]
- Colclasure G. C., Parker J. C. ATP dependence of K-Cl cotransport in dog red blood cells. Am J Physiol. 1993 Dec;265(6 Pt 1):C1648–C1652. doi: 10.1152/ajpcell.1993.265.6.C1648. [DOI] [PubMed] [Google Scholar]
- De Weer P. Effects of intracellular adenosine-5'-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium. J Gen Physiol. 1970 Nov;56(5):583–620. doi: 10.1085/jgp.56.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiPolo R., Beaugé L. Asymmetrical properties of the Na-Ca exchanger in voltage-clamped, internally dialyzed squid axons under symmetrical ionic conditions. J Gen Physiol. 1990 May;95(5):819–835. doi: 10.1085/jgp.95.5.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiPolo R., Beaugé L. Effects of some metal-ATP complexes on Na(+)-Ca2+ exchange in internally dialysed squid axons. J Physiol. 1993 Mar;462:71–86. doi: 10.1113/jphysiol.1993.sp019544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiPolo R., Beaugé L. Effects of vanadate on MgATP stimulation of Na-Ca exchange support kinase-phosphatase modulation in squid axons. Am J Physiol. 1994 May;266(5 Pt 1):C1382–C1391. doi: 10.1152/ajpcell.1994.266.5.C1382. [DOI] [PubMed] [Google Scholar]
- DiPolo R., Beaugé L. Regulation of Na-Ca exchange. An overview. Ann N Y Acad Sci. 1991;639:100–111. doi: 10.1111/j.1749-6632.1991.tb17294.x. [DOI] [PubMed] [Google Scholar]
- DiPolo R. Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons. J Gen Physiol. 1977 Jun;69(6):795–813. doi: 10.1085/jgp.69.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dipolo R., Bezanilla F., Caputo C., Rojas H. Voltage dependence of the Na/Ca exchange in voltage-clamped, dialyzed squid axons. Na-dependent Ca efflux. J Gen Physiol. 1985 Oct;86(4):457–478. doi: 10.1085/jgp.86.4.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dipolo R. Effect of ATP on the calcium efflux in dialyzed squid giant axons. J Gen Physiol. 1974 Oct;64(4):503–517. doi: 10.1085/jgp.64.4.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujitaki J. M., Fung G., Oh E. Y., Smith R. A. Characterization of chemical and enzymatic acid-labile phosphorylation of histone H4 using phosphorus-31 nuclear magnetic resonance. Biochemistry. 1981 Jun 9;20(12):3658–3664. doi: 10.1021/bi00515a055. [DOI] [PubMed] [Google Scholar]
- Harrison S. M., Bers D. M. The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA. Biochim Biophys Acta. 1987 Aug 13;925(2):133–143. doi: 10.1016/0304-4165(87)90102-4. [DOI] [PubMed] [Google Scholar]
- Infante A. A., Davies R. E. The effect of 2,4-dinitrofluorobenzene on the activity of striated muscle. J Biol Chem. 1965 Oct;240(10):3996–4001. [PubMed] [Google Scholar]
- Levy-Favatier F., Delpech M., Kruh J. Characterization of an arginine-specific protein kinase tightly bound to rat liver DNA. Eur J Biochem. 1987 Aug 3;166(3):617–621. doi: 10.1111/j.1432-1033.1987.tb13558.x. [DOI] [PubMed] [Google Scholar]
- Mullins L. J., Brinley F. J., Jr Some factors influencing sodium extrusion by internally dialyzed squid axons. J Gen Physiol. 1967 Nov;50(10):2333–2355. doi: 10.1085/jgp.50.10.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith L. S., Kern C. W., Halpern R. M., Smith R. A. Phosphorylation on basic amino acids in myelin basic protein. Biochem Biophys Res Commun. 1976 Jul 26;71(2):459–465. doi: 10.1016/0006-291x(76)90809-3. [DOI] [PubMed] [Google Scholar]
- Urushizaki Y., Seifter S. Phosphorylation of hydroxylysine residues in collagen synthesized by cultured aortic smooth muscle cells. Proc Natl Acad Sci U S A. 1985 May;82(10):3091–3095. doi: 10.1073/pnas.82.10.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson M. E., Consigli R. A. Functions of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology. 1985 Jun;143(2):526–535. doi: 10.1016/0042-6822(85)90391-5. [DOI] [PubMed] [Google Scholar]
- Yoshizaki K., Watari H., Radda G. K. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Biochim Biophys Acta. 1990 Feb 19;1051(2):144–150. doi: 10.1016/0167-4889(90)90186-h. [DOI] [PubMed] [Google Scholar]
