Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Aug 15;487(Pt 1):57–66. doi: 10.1113/jphysiol.1995.sp020861

Phosphoarginine stimulation of Na(+)-Ca2+ exchange in squid axons--a new pathway for metabolic regulation?

R DiPolo 1, L Beaugé 1
PMCID: PMC1156599  PMID: 7473259

Abstract

1. [Na+]o-dependent Ca2+ efflux (forward Na(+)-Ca2+ exchange), [32P]ATP wash-out curves and [ATP] were measured in internally dialysed squid giant axons at 17-18 degrees C. 2. We found that dialysing squid axons without ATP and with [Ca2+]i around 1 microM the basal levels of the [Na+]o-dependent Ca2+ efflux were significantly higher in the presence of N omega-phosphoarginine (PA). Phosphocreatine, a related phosphagen, is without effect. 3. PA stimulation of the Na(+)-Ca2+ exchange occurs in the complete absence of ATP (< 1 microM), being independent of, and additive to, the ATP-stimulated [Na+]o-dependent Ca2+ efflux. PA stimulation of [Na+]o-dependent Ca2+ efflux is fully and rapidly reversible with a Km around 7.7 mM. Activation by saturating [PA] is equivalent in magnitude to that of ATP. 4. PA stimulation of Na(+)-Ca2+ exchange is markedly dependent on intracellular Ca2+ and Mg2+ ions. Below 0.5 microM Ca2+i PA effect is negligible, becoming noticeable between 0.8 and 2 microM. In addition, Ca2+i considerably increases the rate at which PA activates the Na(+)-Ca2+ exchange. Although there is no absolute requirement of the PA effect for Mg2+ ions, this divalent cation largely stimulates the PA effect. 5. This work demonstrates, for the first time, the presence in squid axons of a new form of metabolic regulation of the Na(+)-Ca2+ exchange directly and solely related to PA and different from that of MgATP. This novel mechanism is likely to play a physiological role in Ca2+ extrusion through the Na(+)-Ca2+ exchanger, particularly at micromolar [Ca2+]i.

Full text

PDF
57

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Glitsch H. G. Voltage-dependent changes in the permeability of nerve membranes to calcium and other divalent cations. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):389–409. doi: 10.1098/rstb.1975.0018. [DOI] [PubMed] [Google Scholar]
  2. Beaugé L., Di Polo R. The effects of ATP on the interactions between monovalent cations and the sodium pump in dialysed squid axons. J Physiol. 1981 May;314:457–480. doi: 10.1113/jphysiol.1981.sp013719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaustein M. P., Santiago E. M. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J. 1977 Oct;20(1):79–111. doi: 10.1016/S0006-3495(77)85538-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brinley F. J., Jr, Mullins L. J. Sodium extrusion by internally dialyzed squid axons. J Gen Physiol. 1967 Nov;50(10):2303–2331. doi: 10.1085/jgp.50.10.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CALDWELL P. C., HODGKIN A. L., KEYNES R. D., SHAW T. I. Partial inhibition of the active transport of cations in the giant axons of Loligo. J Physiol. 1960 Jul;152:591–600. doi: 10.1113/jphysiol.1960.sp006510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen C. C., Bruegger B. B., Kern C. W., Lin Y. C., Halpern R. M., Smith R. A. Phosphorylation of nuclear proteins in rat regenerating liver. Biochemistry. 1977 Nov 1;16(22):4852–4855. doi: 10.1021/bi00641a016. [DOI] [PubMed] [Google Scholar]
  7. Colclasure G. C., Parker J. C. ATP dependence of K-Cl cotransport in dog red blood cells. Am J Physiol. 1993 Dec;265(6 Pt 1):C1648–C1652. doi: 10.1152/ajpcell.1993.265.6.C1648. [DOI] [PubMed] [Google Scholar]
  8. De Weer P. Effects of intracellular adenosine-5'-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium. J Gen Physiol. 1970 Nov;56(5):583–620. doi: 10.1085/jgp.56.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DiPolo R., Beaugé L. Asymmetrical properties of the Na-Ca exchanger in voltage-clamped, internally dialyzed squid axons under symmetrical ionic conditions. J Gen Physiol. 1990 May;95(5):819–835. doi: 10.1085/jgp.95.5.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DiPolo R., Beaugé L. Effects of some metal-ATP complexes on Na(+)-Ca2+ exchange in internally dialysed squid axons. J Physiol. 1993 Mar;462:71–86. doi: 10.1113/jphysiol.1993.sp019544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DiPolo R., Beaugé L. Effects of vanadate on MgATP stimulation of Na-Ca exchange support kinase-phosphatase modulation in squid axons. Am J Physiol. 1994 May;266(5 Pt 1):C1382–C1391. doi: 10.1152/ajpcell.1994.266.5.C1382. [DOI] [PubMed] [Google Scholar]
  12. DiPolo R., Beaugé L. Regulation of Na-Ca exchange. An overview. Ann N Y Acad Sci. 1991;639:100–111. doi: 10.1111/j.1749-6632.1991.tb17294.x. [DOI] [PubMed] [Google Scholar]
  13. DiPolo R. Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons. J Gen Physiol. 1977 Jun;69(6):795–813. doi: 10.1085/jgp.69.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dipolo R., Bezanilla F., Caputo C., Rojas H. Voltage dependence of the Na/Ca exchange in voltage-clamped, dialyzed squid axons. Na-dependent Ca efflux. J Gen Physiol. 1985 Oct;86(4):457–478. doi: 10.1085/jgp.86.4.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dipolo R. Effect of ATP on the calcium efflux in dialyzed squid giant axons. J Gen Physiol. 1974 Oct;64(4):503–517. doi: 10.1085/jgp.64.4.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fujitaki J. M., Fung G., Oh E. Y., Smith R. A. Characterization of chemical and enzymatic acid-labile phosphorylation of histone H4 using phosphorus-31 nuclear magnetic resonance. Biochemistry. 1981 Jun 9;20(12):3658–3664. doi: 10.1021/bi00515a055. [DOI] [PubMed] [Google Scholar]
  17. Harrison S. M., Bers D. M. The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA. Biochim Biophys Acta. 1987 Aug 13;925(2):133–143. doi: 10.1016/0304-4165(87)90102-4. [DOI] [PubMed] [Google Scholar]
  18. Infante A. A., Davies R. E. The effect of 2,4-dinitrofluorobenzene on the activity of striated muscle. J Biol Chem. 1965 Oct;240(10):3996–4001. [PubMed] [Google Scholar]
  19. Levy-Favatier F., Delpech M., Kruh J. Characterization of an arginine-specific protein kinase tightly bound to rat liver DNA. Eur J Biochem. 1987 Aug 3;166(3):617–621. doi: 10.1111/j.1432-1033.1987.tb13558.x. [DOI] [PubMed] [Google Scholar]
  20. Mullins L. J., Brinley F. J., Jr Some factors influencing sodium extrusion by internally dialyzed squid axons. J Gen Physiol. 1967 Nov;50(10):2333–2355. doi: 10.1085/jgp.50.10.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith L. S., Kern C. W., Halpern R. M., Smith R. A. Phosphorylation on basic amino acids in myelin basic protein. Biochem Biophys Res Commun. 1976 Jul 26;71(2):459–465. doi: 10.1016/0006-291x(76)90809-3. [DOI] [PubMed] [Google Scholar]
  22. Urushizaki Y., Seifter S. Phosphorylation of hydroxylysine residues in collagen synthesized by cultured aortic smooth muscle cells. Proc Natl Acad Sci U S A. 1985 May;82(10):3091–3095. doi: 10.1073/pnas.82.10.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilson M. E., Consigli R. A. Functions of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology. 1985 Jun;143(2):526–535. doi: 10.1016/0042-6822(85)90391-5. [DOI] [PubMed] [Google Scholar]
  25. Yoshizaki K., Watari H., Radda G. K. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Biochim Biophys Acta. 1990 Feb 19;1051(2):144–150. doi: 10.1016/0167-4889(90)90186-h. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES