Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Sep 15;487(Pt 3):549–555. doi: 10.1113/jphysiol.1995.sp020899

Control of the amiloride-sensitive Na+ current in mouse salivary ducts by intracellular anions is mediated by a G protein.

A Dinudom 1, P Komwatana 1, J A Young 1, D I Cook 1
PMCID: PMC1156644  PMID: 8544120

Abstract

1. We have previously reported that the Na+ conductance in mouse intralobular salivary duct cells is controlled by cytosolic anions, being inhibited by high cytosolic concentrations of Cl- and NO3- but not of glutamate. In the present paper, we use whole-cell patch-clamp methods to investigate whether this anion effect is mediated by a G protein. 2. Inclusion of 100 mumol l-1 GTP-gamma-S, a non-hydrolysable GTP analogue, in the glutamate-containing pipette solution, i.e. when the Na+ conductance is active, reduced the size of the Na+ conductance whereas inclusion of 100 mumol l-1 GDP-beta-S, a non-hydrolysable GDP analogue, had no effect. 3. Inclusion of 100 mumol l-1 GDP-beta-S in the NO3(-)-containing pipette solution, i.e. when the Na+ conductance is inhibited, reactivated the conductance. Inclusion of 500 ng ml-1 activated pertussis toxin in the NO3(-)-containing pipette solution had a similar effect on the Na+ conductance. 4. We conclude that the inhibitory effect of intracellular anions such as NO3- and Cl- on the amiloride-sensitive Na+ conductance in mouse mandibular intralobular duct cells is mediated by a G protein sensitive to pertussis toxin.

Full text

PDF
549

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bijman J., Cook D. I., van Os C. H. Effect of amiloride on electrolyte transport parameters of the main duct of the rabbit mandibular salivary gland. Pflugers Arch. 1983 Jul;398(2):96–102. doi: 10.1007/BF00581055. [DOI] [PubMed] [Google Scholar]
  2. Dinudom A., Young J. A., Cook D. I. Amiloride-sensitive Na+ current in the granular duct cells of mouse mandibular glands. Pflugers Arch. 1993 Apr;423(1-2):164–166. doi: 10.1007/BF00374977. [DOI] [PubMed] [Google Scholar]
  3. Dinudom A., Young J. A., Cook D. I. Na+ and Cl- conductances are controlled by cytosolic Cl- concentration in the intralobular duct cells of mouse mandibular glands. J Membr Biol. 1993 Sep;135(3):289–295. doi: 10.1007/BF00211100. [DOI] [PubMed] [Google Scholar]
  4. Duc C., Farman N., Canessa C. M., Bonvalet J. P., Rossier B. C. Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J Cell Biol. 1994 Dec;127(6 Pt 2):1907–1921. doi: 10.1083/jcb.127.6.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grinstein S., Furuya W., Downey G. P. Activation of permeabilized neutrophils: role of anions. Am J Physiol. 1992 Jul;263(1 Pt 1):C78–C85. doi: 10.1152/ajpcell.1992.263.1.C78. [DOI] [PubMed] [Google Scholar]
  6. Gruber W. D., Knauf H., Frömter E. The action of aldosterone on Na+ and K+ transport in the rat submaxillary main duct. Pflugers Arch. 1973 Nov 15;344(1):33–49. doi: 10.1007/BF00587440. [DOI] [PubMed] [Google Scholar]
  7. Higashijima T., Ferguson K. M., Sternweis P. C. Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride. J Biol Chem. 1987 Mar 15;262(8):3597–3602. [PubMed] [Google Scholar]
  8. Ismailov I. I., McDuffie J. H., Benos D. J. Protein kinase A phosphorylation and G protein regulation of purified renal Na+ channels in planar bilayer membranes. J Biol Chem. 1994 Apr 8;269(14):10235–10241. [PubMed] [Google Scholar]
  9. Lau K. R., Evans R. L., Case R. M. Intracellular Cl- concentration in striated intralobular ducts from rabbit mandibular salivary glands. Pflugers Arch. 1994 May;427(1-2):24–32. doi: 10.1007/BF00585938. [DOI] [PubMed] [Google Scholar]
  10. Moran A., Davis V. H., Turner R. J. Na+ channels in membrane vesicles from intralobular salivary ducts. Am J Physiol. 1995 Feb;268(2 Pt 1):C350–C355. doi: 10.1152/ajpcell.1995.268.2.C350. [DOI] [PubMed] [Google Scholar]
  11. Nakajima T., Sugimoto T., Kurachi Y. Effects of anions on the G protein-mediated activation of the muscarinic K+ channel in the cardiac atrial cell membrane. Intracellular chloride inhibition of the GTPase activity of GK. J Gen Physiol. 1992 May;99(5):665–682. doi: 10.1085/jgp.99.5.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ohara A., Matsunaga H., Eaton D. C. G protein activation inhibits amiloride-blockable highly selective sodium channels in A6 cells. Am J Physiol. 1993 Feb;264(2 Pt 1):C352–C360. doi: 10.1152/ajpcell.1993.264.2.C352. [DOI] [PubMed] [Google Scholar]
  13. Robertson M. A., Foskett J. K. Na+ transport pathways in secretory acinar cells: membrane cross talk mediated by [Cl-]i. Am J Physiol. 1994 Jul;267(1 Pt 1):C146–C156. doi: 10.1152/ajpcell.1994.267.1.C146. [DOI] [PubMed] [Google Scholar]
  14. Tohda H., Foskett J. K., O'Brodovich H., Marunaka Y. Cl- regulation of a Ca(2+)-activated nonselective cation channel in beta-agonist-treated fetal distal lung epithelium. Am J Physiol. 1994 Jan;266(1 Pt 1):C104–C109. doi: 10.1152/ajpcell.1994.266.1.C104. [DOI] [PubMed] [Google Scholar]
  15. Turnheim K. Intrinsic regulation of apical sodium entry in epithelia. Physiol Rev. 1991 Apr;71(2):429–445. doi: 10.1152/physrev.1991.71.2.429. [DOI] [PubMed] [Google Scholar]
  16. Watson E. L., Oliver C., D'Silva N., Belton C. M. Localization of the G-protein G(o) in exocrine glands. J Histochem Cytochem. 1994 Jan;42(1):41–47. doi: 10.1177/42.1.7505300. [DOI] [PubMed] [Google Scholar]
  17. Zong X., Lux H. D. Augmentation of calcium channel currents in response to G protein activation by GTP gamma S in chick sensory neurons. J Neurosci. 1994 Aug;14(8):4847–4853. doi: 10.1523/JNEUROSCI.14-08-04847.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES