Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Sep 15;487(Pt 3):557–572. doi: 10.1113/jphysiol.1995.sp020900

A slowly activating Ca(2+)-dependent K+ current that plays a role in termination of swimming in Xenopus embryos.

M J Wall 1, N Dale 1
PMCID: PMC1156645  PMID: 8544121

Abstract

1. Acutely isolated Xenopus spinal neurons possess a slowly activating Ca(2+)-dependent outward current which was revealed either by removal of external Ca2+ or by the addition of the Ca2+ channel blocker, 150 microM Cd2+. 2. The Ca(2+)-sensitive current was very slow to activate and had a mean time constant of activation of 437 ms at 0 mV. The current also had very long tail currents which were blocked by Cd2+. The rate of decay of the slowest component of the Ca(2+)-dependent tail currents was insensitive to membrane potential suggesting that the relaxation of the Ca(2+)-dependent current may only be weakly voltage dependent. 3. The reversal potential of the Ca(2+)-sensitive tail currents depended on the concentration of external K+ in a manner predicted by the Nernst equation. Thus the Ca(2+)-sensitive current was carried by K+. 4. The toxin apamin (10 nM to 2 microM) selectively blocked the Ca(2+)-dependent K+ current without affecting voltage-gated K+ currents. This current may be analogous to a small-conductance Ca(2+)-dependent K+ (SK) current; however, unlike some SK currents, the Ca(2+)-dependent K+ current was also sensitive to 500 microM tetraethylammonium chloride (TEA). 5. Applications of 10 nM apamin to spinalized embryos did not perturb the motor pattern for swimming. However, the cycle periods over which the locomotor rhythm generator could generate appropriate motor activity were lengthened by about 10% and the mean duration of swimming episodes was increased by approximately 40%. 6. We therefore propose that the Ca(2+)-dependent K+ current plays an important role in the self-termination of motor activity.

Full text

PDF
557

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett E. F., Barret J. N. Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones. J Physiol. 1976 Mar;255(3):737–774. doi: 10.1113/jphysiol.1976.sp011306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bielefeldt K., Jackson M. B. A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal. J Neurophysiol. 1993 Jul;70(1):284–298. doi: 10.1152/jn.1993.70.1.284. [DOI] [PubMed] [Google Scholar]
  3. Blatz A. L., Magleby K. L. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature. 1986 Oct 23;323(6090):718–720. doi: 10.1038/323718a0. [DOI] [PubMed] [Google Scholar]
  4. Cook N. S., Haylett D. G. Effects of apamin, quinine and neuromuscular blockers on calcium-activated potassium channels in guinea-pig hepatocytes. J Physiol. 1985 Jan;358:373–394. doi: 10.1113/jphysiol.1985.sp015556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dale N. A large, sustained Na(+)- and voltage-dependent K+ current in spinal neurons of the frog embryo. J Physiol. 1993 Mar;462:349–372. doi: 10.1113/jphysiol.1993.sp019559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dale N., Roberts A. Excitatory amino acid receptors in Xenopus embryo spinal cord and their role in the activation of swimming. J Physiol. 1984 Mar;348:527–543. doi: 10.1113/jphysiol.1984.sp015123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dale Nicholas. The Isolation and Identification of Spinal Neurons That Control Movement in the Xenopus Embryo. Eur J Neurosci. 1991;3(10):1025–1035. doi: 10.1111/j.1460-9568.1991.tb00039.x. [DOI] [PubMed] [Google Scholar]
  8. Gustafsson B., Wigström H. Evidence for two types of afterhyperpolarization in CA1 pyramidal cells in the hippocampus. Brain Res. 1981 Feb 16;206(2):462–468. doi: 10.1016/0006-8993(81)90548-5. [DOI] [PubMed] [Google Scholar]
  9. Hill R. H., Arhem P., Grillner S. Ionic mechanisms of 3 types of functionally different neurons in the lamprey spinal cord. Brain Res. 1985 Dec 9;358(1-2):40–52. doi: 10.1016/0006-8993(85)90946-1. [DOI] [PubMed] [Google Scholar]
  10. Hill R., Matsushima T., Schotland J., Grillner S. Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts. Neuroreport. 1992 Oct;3(10):943–945. doi: 10.1097/00001756-199210000-00032. [DOI] [PubMed] [Google Scholar]
  11. Hugues M., Romey G., Duval D., Vincent J. P., Lazdunski M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1308–1312. doi: 10.1073/pnas.79.4.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iwahara T., Atsuta Y., Garcia-Rill E., Skinner R. D. Locomotion induced by spinal cord stimulation in the neonate rat in vitro. Somatosens Mot Res. 1991;8(3):281–287. doi: 10.3109/08990229109144751. [DOI] [PubMed] [Google Scholar]
  13. Jean A. Control of the central swallowing program by inputs from the peripheral receptors. A review. J Auton Nerv Syst. 1984 May-Jun;10(3-4):225–233. doi: 10.1016/0165-1838(84)90017-1. [DOI] [PubMed] [Google Scholar]
  14. Kimura J., Miyamae S., Noma A. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol. 1987 Mar;384:199–222. doi: 10.1113/jphysiol.1987.sp016450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lancaster B., Adams P. R. Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol. 1986 Jun;55(6):1268–1282. doi: 10.1152/jn.1986.55.6.1268. [DOI] [PubMed] [Google Scholar]
  16. McClellan A. D., Grillner S. Initiation and sensory gating of 'fictive' swimming and withdrawal responses in an in vitro preparation of the lamprey spinal cord. Brain Res. 1983 Jun 20;269(2):237–250. doi: 10.1016/0006-8993(83)90133-6. [DOI] [PubMed] [Google Scholar]
  17. McKenna K. E., Chung S. K., McVary K. T. A model for the study of sexual function in anesthetized male and female rats. Am J Physiol. 1991 Nov;261(5 Pt 2):R1276–R1285. doi: 10.1152/ajpregu.1991.261.5.R1276. [DOI] [PubMed] [Google Scholar]
  18. Meer D. P., Buchanan J. T. Apamin reduces the late afterhyperpolarization of lamprey spinal neurons, with little effect on fictive swimming. Neurosci Lett. 1992 Aug 31;143(1-2):1–4. doi: 10.1016/0304-3940(92)90219-w. [DOI] [PubMed] [Google Scholar]
  19. O'Dowd D. K., Ribera A. B., Spitzer N. C. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons. J Neurosci. 1988 Mar;8(3):792–805. doi: 10.1523/JNEUROSCI.08-03-00792.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pennefather P., Lancaster B., Adams P. R., Nicoll R. A. Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc Natl Acad Sci U S A. 1985 May;82(9):3040–3044. doi: 10.1073/pnas.82.9.3040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ribera A. B., Spitzer N. C. Both barium and calcium activate neuronal potassium currents. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6577–6581. doi: 10.1073/pnas.84.18.6577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ribera A. B., Spitzer N. C. Differentiation of IKA in amphibian spinal neurons. J Neurosci. 1990 Jun;10(6):1886–1891. doi: 10.1523/JNEUROSCI.10-06-01886.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roberts A., Clarke J. D. The neuroanatomy of an amphibian embryo spinal cord. Philos Trans R Soc Lond B Biol Sci. 1982 Jan 27;296(1081):195–212. doi: 10.1098/rstb.1982.0002. [DOI] [PubMed] [Google Scholar]
  24. Roberts A. How does a nervous system produce behaviour? A case study in neurobiology. Sci Prog. 1990;74(293 Pt 1):31–51. [PubMed] [Google Scholar]
  25. Roberts A., Tunstall M. J. Mutual Re-excitation with Post-Inhibitory Rebound: A Simulation Study on the Mechanisms for Locomotor Rhythm Generation in the Spinal Cord of Xenopus Embryos. Eur J Neurosci. 1990;2(1):11–23. doi: 10.1111/j.1460-9568.1990.tb00377.x. [DOI] [PubMed] [Google Scholar]
  26. Robertson G. A., Mortin L. I., Keifer J., Stein P. S. Three forms of the scratch reflex in the spinal turtle: central generation of motor patterns. J Neurophysiol. 1985 Jun;53(6):1517–1534. doi: 10.1152/jn.1985.53.6.1517. [DOI] [PubMed] [Google Scholar]
  27. Sauvé R., Simoneau C., Monette R., Roy G. Single-channel analysis of the potassium permeability in HeLa cancer cells: evidence for a calcium-activated potassium channel of small unitary conductance. J Membr Biol. 1986;92(3):269–282. doi: 10.1007/BF01869395. [DOI] [PubMed] [Google Scholar]
  28. Sillar K. T., Roberts A. Control of frequency during swimming in Xenopus embryos: a study on interneuronal recruitment in a spinal rhythm generator. J Physiol. 1993 Dec;472:557–572. doi: 10.1113/jphysiol.1993.sp019962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sillar K. T., Simmers A. J. 5HT induces NMDA receptor-mediated intrinsic oscillations in embryonic amphibian spinal neurons. Proc Biol Sci. 1994 Feb 22;255(1343):139–145. doi: 10.1098/rspb.1994.0020. [DOI] [PubMed] [Google Scholar]
  30. Smith S. J., Thompson S. H. Slow membrane currents in bursting pace-maker neurones of Tritonia. J Physiol. 1987 Jan;382:425–448. doi: 10.1113/jphysiol.1987.sp016376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Soffe S. R. Active and Passive Membrane Properties of Spinal Cord Neurons that Are Rhythmically Active during Swimming in Xenopus Embryos. Eur J Neurosci. 1990 Jan;2(1):1–10. doi: 10.1111/j.1460-9568.1990.tb00376.x. [DOI] [PubMed] [Google Scholar]
  32. Soffe S. R., Roberts A. Tonic and phasic synaptic input to spinal cord motoneurons during fictive locomotion in frog embryos. J Neurophysiol. 1982 Dec;48(6):1279–1288. doi: 10.1152/jn.1982.48.6.1279. [DOI] [PubMed] [Google Scholar]
  33. Storm J. F. Potassium currents in hippocampal pyramidal cells. Prog Brain Res. 1990;83:161–187. doi: 10.1016/s0079-6123(08)61248-0. [DOI] [PubMed] [Google Scholar]
  34. Swenson R. P., Jr, Armstrong C. M. K+ channels close more slowly in the presence of external K+ and Rb+. Nature. 1981 Jun 4;291(5814):427–429. doi: 10.1038/291427a0. [DOI] [PubMed] [Google Scholar]
  35. Wall M. J., Dale N. A role for potassium currents in the generation of the swimming motor pattern of Xenopus embryos. J Neurophysiol. 1994 Jul;72(1):337–348. doi: 10.1152/jn.1994.72.1.337. [DOI] [PubMed] [Google Scholar]
  36. Wall M. J., Dale N. GABAB receptors modulate an omega-conotoxin-sensitive calcium current that is required for synaptic transmission in the Xenopus embryo spinal cord. J Neurosci. 1994 Oct;14(10):6248–6255. doi: 10.1523/JNEUROSCI.14-10-06248.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wallén P., Grillner S. N-methyl-D-aspartate receptor-induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey. J Neurosci. 1987 Sep;7(9):2745–2755. doi: 10.1523/JNEUROSCI.07-09-02745.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhang L., Krnjević K. Apamin depresses selectively the after-hyperpolarization of cat spinal motoneurons. Neurosci Lett. 1987 Feb 10;74(1):58–62. doi: 10.1016/0304-3940(87)90051-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES