Abstract
1. Intracellular recordings were performed in neurones within the basal forebrain of guinea-pig brain slices. Following injection of biocytin (or biotinamide), a subset of recorded neurones which displayed distinct intrinsic membrane properties were confirmed as being cholinergic by immunohistochemical staining for choline acetyltransferase (ChAT). They were all located within the nucleus basalis magnocellularis. The response of the cholinergic cells to NMDA and to the agonists of the other glutamate receptors was tested by bath application of NMDA, t-ACPD, AMPA and kainate. 2. When depolarized from a hyperpolarized level, cholinergic basalis neurones display the intrinsic ability to discharge in rhythmic bursts that are generated by low-threshold Ca2+ spikes. In control solution, these rhythmic bursts were not sustained for more than 5-6 cycles. However, in the presence of NMDA when the membrane was held at a hyperpolarized level, low-threshold bursting activity was sustained for prolonged periods of time. This activity could be reversibly eliminated by D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), showing that it depended upon specific activation of NMDA receptors. 3. NMDA-induced, voltage-dependent, rhythmic depolarizations persisted in the presence of tetrodotoxin (TTX), indicating that they did not depend upon a TTX-sensitive Na+ current and were generated postsynaptically. The rhythmic depolarizations were, however, eliminated by the partial replacement of Na+ with choline, demonstrating that they did depend upon Na+, the major carrier of the NMDA current. 4. In the presence of TTX, the NMDA-induced rhythmic depolarizations were also eliminated by removal of Ca2+ from or addition of Ni2+ to the bath, indicating that they also depended upon Ca2+, which is carried by both the NMDA current and the low-threshold Ca2+ current. The duration of the rhythmic depolarizations was increased in the presence of apamin, suggesting that the repolarization of the cells depended in part upon a Ca(2+)-activated K+ (SK) conductance, but that other mechanisms were additionally involved in the repolarization phase of the bursting. 5. In both the absence and presence of TTX, the NMDA-induced rhythmic activity persisted when Mg2+ was removed from the medium, indicating that the sustained rhythmic depolarizations did not hinge upon the Mg2+ block of the NMDA channels during hyperpolarization. The voltage dependence of the NMDA-induced rhythmic depolarizations in the absence of Mg2+ appeared to be determined by the properties of the low-threshold Ca2+ spike in the cholinergic basalis neurones.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen T. G., Sim J. A., Brown D. A. The whole-cell calcium current in acutely dissociated magnocellular cholinergic basal forebrain neurones of the rat. J Physiol. 1993 Jan;460:91–116. doi: 10.1113/jphysiol.1993.sp019461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blatz A. L., Magleby K. L. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature. 1986 Oct 23;323(6090):718–720. doi: 10.1038/323718a0. [DOI] [PubMed] [Google Scholar]
- Buzsaki G., Bickford R. G., Ponomareff G., Thal L. J., Mandel R., Gage F. H. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci. 1988 Nov;8(11):4007–4026. doi: 10.1523/JNEUROSCI.08-11-04007.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carnes K. M., Fuller T. A., Price J. L. Sources of presumptive glutamatergic/aspartatergic afferents to the magnocellular basal forebrain in the rat. J Comp Neurol. 1990 Dec 22;302(4):824–852. doi: 10.1002/cne.903020413. [DOI] [PubMed] [Google Scholar]
- Charpak S., Gähwiler B. H., Do K. Q., Knöpfel T. Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature. 1990 Oct 25;347(6295):765–767. doi: 10.1038/347765a0. [DOI] [PubMed] [Google Scholar]
- Chergui K., Charléty P. J., Akaoka H., Saunier C. F., Brunet J. L., Buda M., Svensson T. H., Chouvet G. Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur J Neurosci. 1993 Feb 1;5(2):137–144. doi: 10.1111/j.1460-9568.1993.tb00479.x. [DOI] [PubMed] [Google Scholar]
- Chetkovich D. M., Gray R., Johnston D., Sweatt J. D. N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6467–6471. doi: 10.1073/pnas.88.15.6467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durand J. Synaptic excitation triggers oscillations during NMDA receptor activation in rat abducens motoneurons. Eur J Neurosci. 1993 Oct 1;5(10):1389–1397. doi: 10.1111/j.1460-9568.1993.tb00925.x. [DOI] [PubMed] [Google Scholar]
- Flatman J. A., Schwindt P. C., Crill W. E., Stafstrom C. E. Multiple actions of N-methyl-D-aspartate on cat neocortical neurons in vitro. Brain Res. 1983 Apr 25;266(1):169–173. doi: 10.1016/0006-8993(83)91323-9. [DOI] [PubMed] [Google Scholar]
- Fox A. P., Nowycky M. C., Tsien R. W. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol. 1987 Dec;394:149–172. doi: 10.1113/jphysiol.1987.sp016864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gritti I., Mainville L., Jones B. E. Codistribution of GABA- with acetylcholine-synthesizing neurons in the basal forebrain of the rat. J Comp Neurol. 1993 Mar 22;329(4):438–457. doi: 10.1002/cne.903290403. [DOI] [PubMed] [Google Scholar]
- Grove E. A. Neural associations of the substantia innominata in the rat: afferent connections. J Comp Neurol. 1988 Nov 15;277(3):315–346. doi: 10.1002/cne.902770302. [DOI] [PubMed] [Google Scholar]
- Herrling P. L., Morris R., Salt T. E. Effects of excitatory amino acids and their antagonists on membrane and action potentials of cat caudate neurones. J Physiol. 1983 Jun;339:207–222. doi: 10.1113/jphysiol.1983.sp014712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu B., Bourque C. W. NMDA receptor-mediated rhythmic bursting activity in rat supraoptic nucleus neurones in vitro. J Physiol. 1992 Dec;458:667–687. doi: 10.1113/jphysiol.1992.sp019440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingham C. A., Bolam J. P., Wainer B. H., Smith A. D. A correlated light and electron microscopic study of identified cholinergic basal forebrain neurons that project to the cortex in the rat. J Comp Neurol. 1985 Sep 8;239(2):176–192. doi: 10.1002/cne.902390205. [DOI] [PubMed] [Google Scholar]
- Johnson S. W., Seutin V., North R. A. Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science. 1992 Oct 23;258(5082):665–667. doi: 10.1126/science.1329209. [DOI] [PubMed] [Google Scholar]
- Jones B. E., Cuello A. C. Afferents to the basal forebrain cholinergic cell area from pontomesencephalic--catecholamine, serotonin, and acetylcholine--neurons. Neuroscience. 1989;31(1):37–61. doi: 10.1016/0306-4522(89)90029-8. [DOI] [PubMed] [Google Scholar]
- Kaneko T., Itoh K., Shigemoto R., Mizuno N. Glutaminase-like immunoreactivity in the lower brainstem and cerebellum of the adult rat. Neuroscience. 1989;32(1):79–98. doi: 10.1016/0306-4522(89)90109-7. [DOI] [PubMed] [Google Scholar]
- Kaneko T., Mizuno N. Immunohistochemical study of glutaminase-containing neurons in the cerebral cortex and thalamus of the rat. J Comp Neurol. 1988 Jan 22;267(4):590–602. doi: 10.1002/cne.902670411. [DOI] [PubMed] [Google Scholar]
- Khateb A., Mühlethaler M., Alonso A., Serafin M., Mainville L., Jones B. E. Cholinergic nucleus basalis neurons display the capacity for rhythmic bursting activity mediated by low-threshold calcium spikes. Neuroscience. 1992 Dec;51(3):489–494. doi: 10.1016/0306-4522(92)90289-e. [DOI] [PubMed] [Google Scholar]
- Lemann W., Saper C. B. Evidence for a cortical projection to the magnocellular basal nucleus in the rat: an electron microscopic axonal transport study. Brain Res. 1985 May 20;334(2):339–343. doi: 10.1016/0006-8993(85)90228-8. [DOI] [PubMed] [Google Scholar]
- Leresche N., Lightowler S., Soltesz I., Jassik-Gerschenfeld D., Crunelli V. Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol. 1991 Sep;441:155–174. doi: 10.1113/jphysiol.1991.sp018744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer M. L., Westbrook G. L. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol. 1987 Dec;394:501–527. doi: 10.1113/jphysiol.1987.sp016883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer M. L., Westbrook G. L. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol. 1987;28(3):197–276. doi: 10.1016/0301-0082(87)90011-6. [DOI] [PubMed] [Google Scholar]
- McCormick D. A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol. 1992 Oct;39(4):337–388. doi: 10.1016/0301-0082(92)90012-4. [DOI] [PubMed] [Google Scholar]
- Ottersen O. P., Storm-Mathisen J. Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol. 1984 Nov 1;229(3):374–392. doi: 10.1002/cne.902290308. [DOI] [PubMed] [Google Scholar]
- Ramón-Moliner E., Nauta W. J. The isodendritic core of the brain stem. J Comp Neurol. 1966 Mar;126(3):311–335. doi: 10.1002/cne.901260301. [DOI] [PubMed] [Google Scholar]
- Rye D. B., Wainer B. H., Mesulam M. M., Mufson E. J., Saper C. B. Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience. 1984 Nov;13(3):627–643. doi: 10.1016/0306-4522(84)90083-6. [DOI] [PubMed] [Google Scholar]
- Saper C. B. Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. J Comp Neurol. 1984 Jan 20;222(3):313–342. doi: 10.1002/cne.902220302. [DOI] [PubMed] [Google Scholar]
- Seeburg P. H. The TiPS/TINS lecture: the molecular biology of mammalian glutamate receptor channels. Trends Pharmacol Sci. 1993 Aug;14(8):297–303. doi: 10.1016/0165-6147(93)90047-N. [DOI] [PubMed] [Google Scholar]
- Serafin M., Khateb A., de Waele C., Vidal P. P., Mühlethaler M. Medial vestibular nucleus in the guinea-pig: NMDA-induced oscillations. Exp Brain Res. 1992;88(1):187–192. doi: 10.1007/BF02259140. [DOI] [PubMed] [Google Scholar]
- Soltesz I., Lightowler S., Leresche N., Jassik-Gerschenfeld D., Pollard C. E., Crunelli V. Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J Physiol. 1991 Sep;441:175–197. doi: 10.1113/jphysiol.1991.sp018745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steriade M., Llinás R. R. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988 Jul;68(3):649–742. doi: 10.1152/physrev.1988.68.3.649. [DOI] [PubMed] [Google Scholar]
- Tell F., Jean A. Ionic basis for endogenous rhythmic patterns induced by activation of N-methyl-D-aspartate receptors in neurons of the rat nucleus tractus solitarii. J Neurophysiol. 1993 Dec;70(6):2379–2390. doi: 10.1152/jn.1993.70.6.2379. [DOI] [PubMed] [Google Scholar]
- Tell Fabien, Jean André. Activation of N-methyl-d-aspartate Receptors Induces Endogenous Rhythmic Bursting Activities in Nucleus Tractus Solitarii Neurons: An Intracellular Study on Adult Rat Brainstem Slices. Eur J Neurosci. 1991;3(12):1353–1365. doi: 10.1111/j.1460-9568.1991.tb00068.x. [DOI] [PubMed] [Google Scholar]
- Wallén P., Grillner S. N-methyl-D-aspartate receptor-induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey. J Neurosci. 1987 Sep;7(9):2745–2755. doi: 10.1523/JNEUROSCI.07-09-02745.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
