Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Oct 15;488(Pt 2):303–317. doi: 10.1113/jphysiol.1995.sp020968

Inhibition of calcium currents and exocytosis by Lambert-Eaton syndrome antibodies in human lung cancer cells.

M P Viglione 1, T J O'Shaughnessy 1, Y I Kim 1
PMCID: PMC1156672  PMID: 8568672

Abstract

1. Human small-cell lung cancer (SCLC) cells are believed to express the antigens responsible for the production of pathological antibodies in the Lambert-Eaton syndrome (LES), a Ca2+ channel disorder in which quantal transmitter release from the motor nerve terminal is impaired. Whole-cell patch-clamp techniques were used to study the voltage-dependent Ca2+ channels expressed by H146 SCLC cells and the effects of LES antibodies on these channels. The types of Ca2+ channels were determined using biophysical properties and pharmacological sensitivity to several antagonists. 2. Whole-cell Ca2+ currents (ICa) in SCLC cells are sensitive to the dihydropyridine (DHP) nicardipine, omega-conotoxin GVIA (omega-CgTX GVIA) and omega-agatoxin IVA (omega-AgTX IVA). Nicardipine at 100 nM and 10 microM reduced ICa by 35 and 45% (n = 38 cells), respectively, while omega-CgTX GVIA (1 microM) inhibited ICa by 32% (n = 31). Application of omega-AgTX IVA at 50 and 100 nM to the cancer cells decreased ICa by 41 and 42%, respectively (n = 22). 3. Measurement of cell membrane capacitance (Cm) revealed that Ca(2+)-dependent exocytosis underlies the secretory activity of SCLC cells. Exocytosis, when induced by step depolarizing pulses and measured by increases in Cm, was markedly inhibited by nicardipine (10 microM) and omega-AgTX IVA (100 nM). In contrast, omega-CgTX GVIA (1 microM) was not as effective in altering increases in Cm. 4. From negative (-80 mV) and depolarized (-40 mV) holding potentials, both peak and plateau ICa were inhibited by the presence of LES antibodies (1 mg ml-1 IgG). LES serum also reduced depolarization-induced increases in Cm by 48% (n = 15). 5. To determine whether the LES antibodies are downregulating a specific type(s) of Ca2+ channel, nicardipine (10 microM), omega-CgTX GVIA (1 microM) or omega-AgTX IVA (100 nM) was applied to tumour cells that had been previously exposed to LES serum for 24 h. The most pronounced change was that omega-AgTX IVA was 38-84% less effective at reducing ICa after the IgG treatment. The effectiveness of nicardipine was diminished by 18% after incubation with the LES antibodies, whereas the omega-CgTX GVIA was seen to be more effective. These results suggest that LES IgG downregulates P-type Ca2+ channels and, possibly, to a lesser extent L-type channels. 6. In view of recent evidence that P-type Ca2+ channels mediate cholinergic transmitter release at the mammalian neuromuscular junction (NMJ), the expression of P-type Ca2+ channels in the SCLC cells and the reactivity of LES IgG with these channels support the hypothesis that P-type Ca2+ channels in these cancer cells may trigger the autoantibody production in this disorder. The antibodies so produced are implicated in the functional impairment of the Ca2+ channels characteristic of LES.

Full text

PDF
303

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson N. E., Cunningham J. M., Posner J. B. Autoimmune pathogenesis of paraneoplastic neurological syndromes. Crit Rev Neurobiol. 1987;3(3):245–299. [PubMed] [Google Scholar]
  2. Artalejo C. R., Perlman R. L., Fox A. P. Omega-conotoxin GVIA blocks a Ca2+ current in bovine chromaffin cells that is not of the "classic" N type. Neuron. 1992 Jan;8(1):85–95. doi: 10.1016/0896-6273(92)90110-y. [DOI] [PubMed] [Google Scholar]
  3. Barry E. L., Viglione M. P., Kim Y. I., Froehner S. C. Expression and antibody inhibition of P-type calcium channels in human small-cell lung carcinoma cells. J Neurosci. 1995 Jan;15(1 Pt 1):274–283. doi: 10.1523/JNEUROSCI.15-01-00274.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carney D. N. Biology of small-cell lung cancer. Lancet. 1992 Apr 4;339(8797):843–846. doi: 10.1016/0140-6736(92)90286-c. [DOI] [PubMed] [Google Scholar]
  5. Chester K. A., Lang B., Gill J., Vincent A., Newsom-Davis J. Lambert-Eaton syndrome antibodies: reaction with membranes from a small cell lung cancer xenograft. J Neuroimmunol. 1988 May;18(2):97–104. doi: 10.1016/0165-5728(88)90058-6. [DOI] [PubMed] [Google Scholar]
  6. De Aizpurua H. J., Lambert E. H., Griesmann G. E., Olivera B. M., Lennon V. A. Antagonism of voltage-gated calcium channels in small cell carcinomas of patients with and without Lambert-Eaton myasthenic syndrome by autoantibodies omega-conotoxin and adenosine. Cancer Res. 1988 Sep 1;48(17):4719–4724. [PubMed] [Google Scholar]
  7. Fox A. P., Nowycky M. C., Tsien R. W. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol. 1987 Dec;394:149–172. doi: 10.1113/jphysiol.1987.sp016864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fukuoka T., Engel A. G., Lang B., Newsom-Davis J., Prior C., Wray D. W. Lambert-Eaton myasthenic syndrome: I. Early morphological effects of IgG on the presynaptic membrane active zones. Ann Neurol. 1987 Aug;22(2):193–199. doi: 10.1002/ana.410220203. [DOI] [PubMed] [Google Scholar]
  9. HOREJSI J., SMETANA R. The isolation of gamma globulin from blood-serum by rivanol. Acta Med Scand. 1956 Jun 30;155(1):65–70. doi: 10.1111/j.0954-6820.1956.tb14351.x. [DOI] [PubMed] [Google Scholar]
  10. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  11. Hewett S. J., Atchison W. D. Disruption of synaptosomal calcium channel function by Lambert-Eaton myasthenic immunoglobulin is serum-dependent. Brain Res. 1992 Dec 25;599(2):317–323. doi: 10.1016/0006-8993(92)90407-z. [DOI] [PubMed] [Google Scholar]
  12. Kerr L. M., Yoshikami D. A venom peptide with a novel presynaptic blocking action. Nature. 1984 Mar 15;308(5956):282–284. doi: 10.1038/308282a0. [DOI] [PubMed] [Google Scholar]
  13. Kim Y. I., Neher E. IgG from patients with Lambert-Eaton syndrome blocks voltage-dependent calcium channels. Science. 1988 Jan 22;239(4838):405–408. doi: 10.1126/science.2447652. [DOI] [PubMed] [Google Scholar]
  14. Kim Y. I. Passive transfer of the Lambert-Eaton myasthenic syndrome: neuromuscular transmission in mice injected with plasma. Muscle Nerve. 1985 Feb;8(2):162–172. doi: 10.1002/mus.880080213. [DOI] [PubMed] [Google Scholar]
  15. Kim Y. I. Passively transferred Lambert-Eaton syndrome in mice receiving purified IgG. Muscle Nerve. 1986 Jul-Aug;9(6):523–530. doi: 10.1002/mus.880090608. [DOI] [PubMed] [Google Scholar]
  16. Lang B., Newsom-Davis J., Prior C., Wray D. Antibodies to motor nerve terminals: an electrophysiological study of a human myasthenic syndrome transferred to mouse. J Physiol. 1983 Nov;344:335–345. doi: 10.1113/jphysiol.1983.sp014943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lang B., Newsom-Davis J., Wray D., Vincent A., Murray N. Autoimmune aetiology for myasthenic (Eaton-Lambert) syndrome. Lancet. 1981 Aug 1;2(8240):224–226. doi: 10.1016/s0140-6736(81)90474-8. [DOI] [PubMed] [Google Scholar]
  18. Lennon V. A., Lambert E. H. Autoantibodies bind solubilized calcium channel-omega-conotoxin complexes from small cell lung carcinoma: a diagnostic aid for Lambert-Eaton myasthenic syndrome. Mayo Clin Proc. 1989 Dec;64(12):1498–1504. doi: 10.1016/s0025-6196(12)65705-x. [DOI] [PubMed] [Google Scholar]
  19. Leveque C., Hoshino T., David P., Shoji-Kasai Y., Leys K., Omori A., Lang B., el Far O., Sato K., Martin-Moutot N. The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndrome antigen. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3625–3629. doi: 10.1073/pnas.89.8.3625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mintz I. M., Adams M. E., Bean B. P. P-type calcium channels in rat central and peripheral neurons. Neuron. 1992 Jul;9(1):85–95. doi: 10.1016/0896-6273(92)90223-z. [DOI] [PubMed] [Google Scholar]
  21. Mori Y., Friedrich T., Kim M. S., Mikami A., Nakai J., Ruth P., Bosse E., Hofmann F., Flockerzi V., Furuichi T. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature. 1991 Apr 4;350(6317):398–402. doi: 10.1038/350398a0. [DOI] [PubMed] [Google Scholar]
  22. O'Neill J. H., Murray N. M., Newsom-Davis J. The Lambert-Eaton myasthenic syndrome. A review of 50 cases. Brain. 1988 Jun;111(Pt 3):577–596. doi: 10.1093/brain/111.3.577. [DOI] [PubMed] [Google Scholar]
  23. O'Shaughnessy T. J., Kim Y. I. A computer-based system for the measurement of membrane capacitance to monitor exocytosis in secretory cells. J Neurosci Methods. 1995 Mar;57(1):1–8. doi: 10.1016/0165-0270(94)00104-o. [DOI] [PubMed] [Google Scholar]
  24. Pancrazio J. J., Oie H. K., Kim Y. I. Voltage-sensitive calcium channels in a human small-cell lung cancer cell line. Acta Physiol Scand. 1992 Apr;144(4):463–468. doi: 10.1111/j.1748-1716.1992.tb09321.x. [DOI] [PubMed] [Google Scholar]
  25. Pancrazio J. J., Viglione M. P., Tabbara I. A., Kim Y. I. Voltage-dependent ion channels in small-cell lung cancer cells. Cancer Res. 1989 Nov 1;49(21):5901–5906. [PubMed] [Google Scholar]
  26. Peers C., Lang B., Newsom-Davis J., Wray D. W. Selective action of myasthenic syndrome antibodies on calcium channels in a rodent neuroblastoma x glioma cell line. J Physiol. 1990 Feb;421:293–308. doi: 10.1113/jphysiol.1990.sp017945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roberts A., Perera S., Lang B., Vincent A., Newsom-Davis J. Paraneoplastic myasthenic syndrome IgG inhibits 45Ca2+ flux in a human small cell carcinoma line. Nature. 1985 Oct 24;317(6039):737–739. doi: 10.1038/317737a0. [DOI] [PubMed] [Google Scholar]
  28. Rosenfeld M. R., Wong E., Dalmau J., Manley G., Posner J. B., Sher E., Furneaux H. M. Cloning and characterization of a Lambert-Eaton myasthenic syndrome antigen. Ann Neurol. 1993 Jan;33(1):113–120. doi: 10.1002/ana.410330126. [DOI] [PubMed] [Google Scholar]
  29. Schwartz L. M., McCleskey E. W., Almers W. Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. 1985 Apr 25-May 1Nature. 314(6013):747–751. doi: 10.1038/314747a0. [DOI] [PubMed] [Google Scholar]
  30. Sher E., Pandiella A., Clementi F. Voltage-operated calcium channels in small cell lung carcinoma cell lines: pharmacological, functional, and immunological properties. Cancer Res. 1990 Jul 1;50(13):3892–3896. [PubMed] [Google Scholar]
  31. Tischler A. S., Dichter M. A., Biales B. Electrical excitability of oat cell carcinoma. J Pathol. 1977 Jul;122(3):153–156. doi: 10.1002/path.1711220306. [DOI] [PubMed] [Google Scholar]
  32. Uchitel O. D., Protti D. A., Sanchez V., Cherksey B. D., Sugimori M., Llinás R. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3330–3333. doi: 10.1073/pnas.89.8.3330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Viglione M. P., Creutz C. E., Kim Y. I. Lambert-Eaton syndrome: antigen-antibody interaction and calcium current inhibition in chromaffin cells. Muscle Nerve. 1992 Dec;15(12):1325–1333. doi: 10.1002/mus.880151206. [DOI] [PubMed] [Google Scholar]
  34. Vincent A., Lang B., Newsom-Davis J. Autoimmunity to the voltage-gated calcium channel underlies the Lambert-Eaton myasthenic syndrome, a paraneoplastic disorder. Trends Neurosci. 1989 Dec;12(12):496–502. doi: 10.1016/0166-2236(89)90109-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES