Abstract
Rat cortical synaptosomes were prelabeled with radioactive acetylcholine and the release induced by veratridine was determined in the absence and presence of the inhibitory presynaptic modulators, 2-chloroadenosine, carbamylcholine, clonidine, and morphine. All four agents inhibited the evoked release of acetylcholine and this inhibition was reversed by dendrotoxin.
Using perfused cortical slices and an extracellular K-sensitive electrode, all modulators again increased K efflux that was blocked by dendrotoxin. In contrast, glybenclamide and tetraethylammonium did not block the modulatorinduced efflux.
Key words: Dendrotoxin, 2-chloroadenosine, carbamylcholine, morphine, clonidine, K channels, presynaptic modulation
References
- 1.Aghajanian, G. K., and Wang, Y. Y. (1987). Common a2 and opiate effector mechanisms in the locus coerulius: intracellular studies in brain slices.Neuropharmacology26793–799. [DOI] [PubMed] [Google Scholar]
- 2.Amman, D., Chao, P., and Simon, W. (1987). Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance.Neurosci. Lett.74221–226. [DOI] [PubMed] [Google Scholar]
- 3.Anderson, A. J., and Harvey, A. L. (1988). Effects of the potassium channel blocking dendrotoxins on acetylcholine release and motor nerve terminal activity.Br. J. Pharmacol.93215–221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Aronson, J. K. (1991). Potassium channels in nervous tissue.Biochem. Pharmacol.4311–14. [DOI] [PubMed] [Google Scholar]
- 5.Benishin, C. G. (1990). Purinergic modulation of hippocampal acetylcholine release involvesα-dendrotoxin-sensitive potassium channels.J. Neurochem.552086–2090. [DOI] [PubMed] [Google Scholar]
- 6.Benishin, C. G., Sorensen, R. G., Brown, W. E., Krueger, B. K., and Blaustein, M. P. (1988). Four polypeptide components of green mamba venom selectively block certain potassium channels in rat brain synaptosomes.Mol. Pharmacol.34152–159. [PubMed] [Google Scholar]
- 7.Cass, W. A., and Zahniser, N. R. (1991). Potassium channel blockers inhibit D2 dopamine but not A1 adenosine, receptor-mediated inhibition of striatal dopamine release.J. Neurochem.57147–152. [DOI] [PubMed] [Google Scholar]
- 8.Castle, N. A., Haylett, D. G., and Jenkinson, D. H. (1989). Toxins in the characterization of potassium channels.Trends Neurosci.1259–65. [DOI] [PubMed] [Google Scholar]
- 9.Cooper, J. R. (1989). A simple method to determine released acetylcholine in the presence of choline.Life Sci.452041–2042. [DOI] [PubMed] [Google Scholar]
- 10.Cooper, J. R., Bloom, R. E., and Roth, R. H. (1991).The Biochemical Basis of Neuropharmacology, 6th ed., Oxford University Press, pp. 111-132.
- 11.Halliwell, J. L., Othman, I. B., Pelcher-Mathews, A., and Dolly, J. O. (1986). Central actions of dendrotoxin: Selective reduction of a transient K conductance in hippocampus and binding to localized acceptors.Proc. Natl. Acad. Sci. USA83493–497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Harvey, A. L., and Karlsson, E. (1980). Dendrotoxin from the green mamba, Dendroaspis angusticeps: A neurotoxin that enhances acetylcholine release at neuromuscular junctions.Nauyn-Schmiedeberg Arch. Pharmacol.3121–6. [DOI] [PubMed] [Google Scholar]
- 13.Hu, P. S., Benishin, C., and Fredholm, B. B. (1991). Comparison of the effects of four dendrotoxin peptides, 4-aminopyridine and tetraethylammonium on the electrically evoked [3H]noradrenaline release from rat hippocampus.Eur. J. Pharmacol.20987–93. [DOI] [PubMed] [Google Scholar]
- 14.Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem.193265–275. [PubMed] [Google Scholar]
- 15.Lucchesi, K., and Moczydlowski, E. (1990). Subconductance behavior in a maxi Ca2+-activated K+ channel induced by dendrotoxin-1.Neuron2141–148. [DOI] [PubMed] [Google Scholar]
- 16.Michaelis, M. L., Johe, K. K., Moghadam, B., and Adams, R. N. (1988). Studies on the ionic mechanism for the neuromodulatory actions of adenosine in the brain.Brian Res.473249–260. [DOI] [PubMed] [Google Scholar]
- 17.Moczydlowski, E., Lucchesi, K., and Ravindran, A. (1988). An emerging pharmacology of peptide toxins targeted against potassium channels.J. Membr. Biol.10791–111. [DOI] [PubMed] [Google Scholar]
- 18.Nagy, A., and Delgado-Escueta, A. V. (1984). Rapid preparation of synaptosomes from mammalian brain using non-toxic isosmotic gradient material (Percoll).J. Neurochem.431114–1123. [DOI] [PubMed] [Google Scholar]
- 19.North, R. A. (1989). Drug receptors and the inhibition of nerve cells.Br. J. Pharmacol.9813–28. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Rudy, B. (1988). Diversity and ubiquity of K channels.Neuroscience25729–749. [DOI] [PubMed] [Google Scholar]
- 21.Trussel, L. O., and Jackson, M. B. (1987). Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons.J. Neurosci73306–3316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Weller, U., Bernhardt, V., Siemen, D., Dreyer, F., Vogel, W., and Habermann, E. (1985). Electrophysiological and neurobiochemical evidence for the blockade of a potassium channel by dendrotoxin.Naunyn-Schmiedeberg Arch. Pharmacol.33077–83. [DOI] [PubMed] [Google Scholar]
- 23.Zoltay, G., and Cooper, R. R. (1990). Ionic basis of inhibitory presynaptic modulation in rat cortical synaptosomes.J. Neurochem.551008–1012. [DOI] [PubMed] [Google Scholar]
