Abstract
1. The development of action potential conduction was studied by intracellular recording of antidromic spikes in cat rubrospinal cells. 2. The distance between the C1 and L1 spinal segments increased linearly from 5.6 cm at embryonic day (E) 59 to 9.8 cm at postnatal day (P) 30. 3. The conduction time from the C1 segment to the rubrospinal neuron soma, estimated from antidromic spike latency evoked by stimulation of the C1 segment, decreased rapidly prior to birth and then slowly thereafter. This coincided with a reduction in conduction time variation between cells. 4. The conduction time from the red nucleus to the L1 segment followed a similar time course during development. The conduction time reached the adult value by P30, at which time the spinal cord is only half the adult length. 5. The conduction velocity between the C1 and L1 segments increased monotonically between E59 and P30, from a low of 1 m s-1 to a maximum of 34 m s-1. 6. The rise time of rubrospinal neuron somadendritic spikes followed a developmental time course similar to that for conduction time. 7. Myelination of rubrospinal axons, as judged by the presence of myelinated segment spikes, began to occur prior to E59. 8. These findings suggest that development of action potential propagation in rubrospinal cells can be divided into an early and a late stage: conduction time reaches the adult value during the early stage, i.e. by the first postnatal month, and is maintained during the late stage. We propose that myelination, axon diameter increase and maturation of membrane properties act to reduce conduction time to adult values during the early stage, while a proportional increase in fibre diameter with axonal length results in a constant conduction time during the late stage.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arbuthnott E. R., Boyd I. A., Kalu K. U. Ultrastructural dimensions of myelinated peripheral nerve fibres in the cat and their relation to conduction velocity. J Physiol. 1980 Nov;308:125–157. doi: 10.1113/jphysiol.1980.sp013465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BIRREN J. E., WALL P. D. Age changes in conduction velocity, refractory period, number of fibers, connective tissue space and blood vessels in sciatic nerve of rats. J Comp Neurol. 1956 Feb;104(1):1–16. doi: 10.1002/cne.901040102. [DOI] [PubMed] [Google Scholar]
- COOMBS J. S., CURTIS D. R., ECCLES J. C. The interpretation of spike potentials of motoneurones. J Physiol. 1957 Dec 3;139(2):198–231. doi: 10.1113/jphysiol.1957.sp005887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X. Y., Carp J. S., Wolpaw J. R. Constancy of motor axon conduction time during growth in rats. Exp Brain Res. 1992;90(2):343–345. doi: 10.1007/BF00227247. [DOI] [PubMed] [Google Scholar]
- Dorfman L. J., Bosley T. M. Age-related changes in peripheral and central nerve conduction in man. Neurology. 1979 Jan;29(1):38–44. doi: 10.1212/wnl.29.1.38. [DOI] [PubMed] [Google Scholar]
- Eyre J. A., Miller S., Ramesh V. Constancy of central conduction delays during development in man: investigation of motor and somatosensory pathways. J Physiol. 1991 Mar;434:441–452. doi: 10.1113/jphysiol.1991.sp018479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horikawa Y. Noise effects on spike propagation in the stochastic Hodgkin-Huxley models. Biol Cybern. 1991;66(1):19–25. doi: 10.1007/BF00196449. [DOI] [PubMed] [Google Scholar]
- Huguenard J. R., Hamill O. P., Prince D. A. Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J Neurophysiol. 1988 Mar;59(3):778–795. doi: 10.1152/jn.1988.59.3.778. [DOI] [PubMed] [Google Scholar]
- ITO M., HONGO T., YOSHIDA M., OKADA Y., OBATA K. ANTIDROMIC AND TRANS-SYNAPTIC ACTIVATION OF DEITERS' NEURONES INDUCED FROM THE SPINAL CORD. Jpn J Physiol. 1964 Dec 15;14:638–658. doi: 10.2170/jjphysiol.14.638. [DOI] [PubMed] [Google Scholar]
- Kawaguchi S., Samejima A., Yamamoto T. Post-natal development of the cerebello-cerebral projection in kittens. J Physiol. 1983 Oct;343:215–232. doi: 10.1113/jphysiol.1983.sp014889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwabara N., Suga N. Delay lines and amplitude selectivity are created in subthalamic auditory nuclei: the brachium of the inferior colliculus of the mustached bat. J Neurophysiol. 1993 May;69(5):1713–1724. doi: 10.1152/jn.1993.69.5.1713. [DOI] [PubMed] [Google Scholar]
- NORRIS A. H., SHOCK N. W., WAGMAN I. H. Age changes in the maximum conduction velocity of motor fibers of human ulnar nerves. J Appl Physiol. 1953 Apr;5(10):589–593. doi: 10.1152/jappl.1953.5.10.589. [DOI] [PubMed] [Google Scholar]
- Oka H., Samejima A., Yamamoto T. Post-natal development of pyramidal tract neurones in kittens. J Physiol. 1985 Jun;363:481–499. doi: 10.1113/jphysiol.1985.sp015723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUSHTON W. A. H. A theory of the effects of fibre size in medullated nerve. J Physiol. 1951 Sep;115(1):101–122. doi: 10.1113/jphysiol.1951.sp004655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson F. R., Houk J. C., Gibson A. R. Limb specific connections of the cat magnocellular red nucleus. J Comp Neurol. 1987 Mar 22;257(4):553–577. doi: 10.1002/cne.902570406. [DOI] [PubMed] [Google Scholar]
- Sakai T., Komuro H., Katoh Y., Sasaki H., Momose-Sato Y., Kamino K. Optical determination of impulse conduction velocity during development of embryonic chick cervical vagus nerve bundles. J Physiol. 1991 Aug;439:361–381. doi: 10.1113/jphysiol.1991.sp018671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato A., Sato Y., Suzuki H. Aging effects on conduction velocities of myelinated and unmyelinated fibers of peripheral nerves. Neurosci Lett. 1985 Jan 7;53(1):15–20. doi: 10.1016/0304-3940(85)90090-4. [DOI] [PubMed] [Google Scholar]
- Song W. J., Kanda M., Ohno T., Kanda M., Oikawa H., Murakami F. Segregation of cerebrorubral and cerebellorubral synaptic inputs on rubrospinal neurons of fetal cats as demonstrated by intracellular recording. Neurosci Lett. 1993 Sep 3;159(1-2):99–102. doi: 10.1016/0304-3940(93)90808-x. [DOI] [PubMed] [Google Scholar]
- Song W. J., Kobayashi Y., Murakami F. An electrophysiological study of a transient ipsilateral interpositorubral projection in neonatal cats. Exp Brain Res. 1993;92(3):399–406. doi: 10.1007/BF00229028. [DOI] [PubMed] [Google Scholar]
- Sugihara I., Lang E. J., Llinás R. Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. J Physiol. 1993 Oct;470:243–271. doi: 10.1113/jphysiol.1993.sp019857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner J. M., Whitehouse R. H., Takaishi M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. II. Arch Dis Child. 1966 Dec;41(220):613–635. doi: 10.1136/adc.41.220.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukahara N., Toyama K., Kosaka K. Electrical activity of red nucleus neurones investigated with intracellular microelectrodes. Exp Brain Res. 1967;4(1):18–33. doi: 10.1007/BF00235214. [DOI] [PubMed] [Google Scholar]
- WAGMAN I. H., LESSE H. Maximum conduction velocities of motor fibers of ulnar nerve in human subjects of various ages and sizes. J Neurophysiol. 1952 May;15(3):235–244. doi: 10.1152/jn.1952.15.3.235. [DOI] [PubMed] [Google Scholar]
- Waxman S. G. Integrative properties and design principles of axons. Int Rev Neurobiol. 1975;18:1–40. doi: 10.1016/s0074-7742(08)60032-x. [DOI] [PubMed] [Google Scholar]

