Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Oct 15;488(Pt 2):521–531. doi: 10.1113/jphysiol.1995.sp020987

Facilitation of the arterial baroreflex by the preoptic area in anaesthetized rats.

K Inui 1, J Nomura 1, S Murase 1, S Nosaka 1
PMCID: PMC1156691  PMID: 8568691

Abstract

1. Activation of cell bodies in the ventrolateral part of the midbrain periaqueductal grey matter (PAG) facilitates the arterial baroreflex via the nucleus raphe magnus. The facilitatory effects of stimulation within the hypothalamus on the arterial baroreflex and their relation to the PAG and nucleus raphe magnus were studied in urethane- and chloralose-anaesthetized rats. 2. Systematic mapping experiments revealed that the preoptic area (POA) is the principal location in the hypothalamus of neuronal cell bodies that are responsible for the potentiation of the baroreflex. In addition to provoking hypotension and vagal bradycardia, both electrical and chemical stimulation of the POA produced facilitation of baroreflex vagal bradycardia (BVB) that was evoked by electrical stimulation of the aortic depressor nerve. Baroreflex hypotension was slightly augmented during activation of the POA in vagotomized rats. 3. Selective destruction of cell bodies either in the ventrolateral PAG or in the nucleus raphe magnus reduced facilitation of BVB by the POA. Hypotension and bradycardia due to POA stimulation were also markedly attenuated after such selective destruction. 4. In conclusion, the POA, the ventrolateral PAG and the nucleus raphe magnus constitute a functional complex that produces cardiovascular trophotropic effects including hypotension, vagal bradycardia and baroreflex facilitation.

Full text

PDF
521

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandler R., Carrive P. Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat. Brain Res. 1988 Jan 26;439(1-2):95–106. doi: 10.1016/0006-8993(88)91465-5. [DOI] [PubMed] [Google Scholar]
  2. Bandler R., Carrive P., Zhang S. P. Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization. Prog Brain Res. 1991;87:269–305. doi: 10.1016/s0079-6123(08)63056-3. [DOI] [PubMed] [Google Scholar]
  3. Beattie J., Sheehan D. The effects of hypothalamic stimulation on gastric motility. J Physiol. 1934 May 21;81(2):218–227. doi: 10.1113/jphysiol.1934.sp003128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiba T., Murata Y. Afferent and efferent connections of the medial preoptic area in the rat: a WGA-HRP study. Brain Res Bull. 1985 Mar;14(3):261–272. doi: 10.1016/0361-9230(85)90091-7. [DOI] [PubMed] [Google Scholar]
  5. Clemente C. D., Chase M. H., Knauss T. K., Sauerland E. K., Sterman M. B. Inhibition of a monosynaptic reflex by electrical stimulation of the basal forebrain or the orbital gyrus in the cat. Experientia. 1966 Dec 15;22(12):844–845. doi: 10.1007/BF01897455. [DOI] [PubMed] [Google Scholar]
  6. Evans M. H. Potentiation of a cardioinhibitory reflex by hypothalamic stimulation in the rabbit. Brain Res. 1978 Oct 13;154(2):331–343. doi: 10.1016/0006-8993(78)90704-7. [DOI] [PubMed] [Google Scholar]
  7. GRASTYAN E., LISSAK K., HASZNOS T., MOLNAR L. Some functional properties of hypothalamic inhibition. Acta Physiol Acad Sci Hung. 1953;4(3-4):241–252. [PubMed] [Google Scholar]
  8. HEMINGWAY A., FORGRAVE P., BIRZIS L. Shivering suppression by hypothalamic stimulation. J Neurophysiol. 1954 Jul;17(4):375–386. doi: 10.1152/jn.1954.17.4.375. [DOI] [PubMed] [Google Scholar]
  9. Hilton S. M., Redfern W. S. A search for brain stem cell groups integrating the defence reaction in the rat. J Physiol. 1986 Sep;378:213–228. doi: 10.1113/jphysiol.1986.sp016215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hilton S. M., Spyer K. M. Participation of the anterior hypothalamus in the baroreceptor reflex. J Physiol. 1971 Oct;218(2):271–293. doi: 10.1113/jphysiol.1971.sp009617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inui K., Murase S., Nosaka S. Facilitation of the arterial baroreflex by the ventrolateral part of the midbrain periaqueductal grey matter in rats. J Physiol. 1994 May 15;477(Pt 1):89–101. doi: 10.1113/jphysiol.1994.sp020174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klevans L. R., Gebber G. L. Facilitatory forebrain influence on cardiac component of baroreceptor reflexes. Am J Physiol. 1970 Nov;219(5):1235–1241. doi: 10.1152/ajplegacy.1970.219.5.1235. [DOI] [PubMed] [Google Scholar]
  13. Lai Y. Y., Siegel J. M. Cardiovascular and muscle tone changes produced by microinjection of cholinergic and glutamatergic agonists in dorsolateral pons and medial medulla. Brain Res. 1990 Apr 23;514(1):27–36. doi: 10.1016/0006-8993(90)90432-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lalley P. M. Responses of phrenic motoneurones of the cat to stimulation of medullary raphe nuclei. J Physiol. 1986 Nov;380:349–371. doi: 10.1113/jphysiol.1986.sp016290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lineberry C. G., Siegel J. EEG synchronization, behavioral inhibition, and mesencephalic unit effects produced by stimulation of orbital cortex, basal forebrain and caudate nucleus. Brain Res. 1971 Nov;34(1):143–161. doi: 10.1016/0006-8993(71)90356-8. [DOI] [PubMed] [Google Scholar]
  16. Lovick T. A. Integrated activity of cardiovascular and pain regulatory systems: role in adaptive behavioural responses. Prog Neurobiol. 1993 May;40(5):631–644. doi: 10.1016/0301-0082(93)90036-r. [DOI] [PubMed] [Google Scholar]
  17. Lumb B. M., Lovick T. A. The rostral hypothalamus: an area for the integration of autonomic and sensory responsiveness. J Neurophysiol. 1993 Oct;70(4):1570–1577. doi: 10.1152/jn.1993.70.4.1570. [DOI] [PubMed] [Google Scholar]
  18. Lumb B. M., Morrison J. F. Electrophysiological evidence for an excitatory projection from ventromedial forebrain structures on to raphe- and reticulo-spinal neurones in the rat. Brain Res. 1986 Aug 13;380(1):162–166. doi: 10.1016/0006-8993(86)91442-3. [DOI] [PubMed] [Google Scholar]
  19. Miyajima E., Buñag R. D. Anterior hypothalamic lesions impair reflex bradycardia selectively in rats. Am J Physiol. 1985 Jun;248(6 Pt 2):H937–H944. doi: 10.1152/ajpheart.1985.248.6.H937. [DOI] [PubMed] [Google Scholar]
  20. Mokha S. S., Goldsmith G. E., Hellon R. F., Puri R. Hypothalamic control of nocireceptive and other neurons in the marginal layer of the dorsal horn of the medulla (trigeminal nucleus caudalis) in the rat. Exp Brain Res. 1987;65(2):427–436. doi: 10.1007/BF00236316. [DOI] [PubMed] [Google Scholar]
  21. Nosaka S., Murase S., Murata K. Arterial baroreflex inhibition by gastric distension in rats: mediation by splanchnic afferents. Am J Physiol. 1991 May;260(5 Pt 2):R985–R994. doi: 10.1152/ajpregu.1991.260.5.R985. [DOI] [PubMed] [Google Scholar]
  22. Nosaka S., Murata K., Inui K., Murase S. Arterial baroreflex inhibition by midbrain periaqueductal grey in anaesthetized rats. Pflugers Arch. 1993 Aug;424(3-4):266–275. doi: 10.1007/BF00384352. [DOI] [PubMed] [Google Scholar]
  23. Nosaka S., Nakase N., Murata K. Somatosensory and hypothalamic inhibitions of baroreflex vagal bradycardia in rats. Pflugers Arch. 1989 Apr;413(6):656–666. doi: 10.1007/BF00581817. [DOI] [PubMed] [Google Scholar]
  24. Pardini B. J., Patel K. P., Schmid P. G., Lund D. D. Facilitation of baroreflex-induced bradycardia by stimulation of specific hypothalamic sites in the rat. Brain Res. 1986 Oct 8;384(2):274–281. doi: 10.1016/0006-8993(86)91163-7. [DOI] [PubMed] [Google Scholar]
  25. STERMAN M. B., CLEMENTE C. D. Forebrain inhibitory mechanisms: cortical synchronization induced by basal forebrain stimulation. Exp Neurol. 1962 Aug;6:91–102. doi: 10.1016/0014-4886(62)90080-8. [DOI] [PubMed] [Google Scholar]
  26. Sapru H. N., Krieger A. J. Carotid and aortic chemoreceptor function in the rat. J Appl Physiol Respir Environ Exerc Physiol. 1977 Mar;42(3):344–348. doi: 10.1152/jappl.1977.42.3.344. [DOI] [PubMed] [Google Scholar]
  27. Semenenko F. M., Lumb B. M. Projections of anterior hypothalamic neurones to the dorsal and ventral periaqueductal grey in the rat. Brain Res. 1992 Jun 12;582(2):237–245. doi: 10.1016/0006-8993(92)90139-z. [DOI] [PubMed] [Google Scholar]
  28. Spyer K. M. Baroreceptor sensitive neurones in the anterior hypothalamus of the cat. J Physiol. 1972 Jul;224(1):245–257. doi: 10.1113/jphysiol.1972.sp009892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Swanson L. W. An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol. 1976 May 15;167(2):227–256. doi: 10.1002/cne.901670207. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES