Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 1991 Feb;11(1):105–118. doi: 10.1007/BF00712803

Comparative studies on the primary structure of acetylcholinesterases from bovine caudate nucleus and bovine erythrocytes

H Heider 1, P Litynski 1, S Stieger 1, U Brodbeck 1,
PMCID: PMC11567223  PMID: 2013055

Abstract

  1. Comparison of partial amino acid sequences of G2-acetylcholinesterase (AChE) from bovine erythrocytes and G4-AChE from bovine caudate nucleus revealed no differences in primary structure between the two enyzmes. The first 33 residues of the N-terminal sequences were identical.

  2. In addition, the amino acid sequences of four peptides generated by tryptic and cyanogen bromide cleavage were identical for bovine erthyrocyte and brain AChE, suggesting one identical major coding exon for the adult bovine AChE forms. Comparison of these sequences with that of fetal bovine serum AChE (Doctoret al., 1988), showed differences in residues 16, 181, 212, and 216.

  3. Deglycosylation studies of the two adult enzyme forms revealed that the core protein of erythrocyte AChE has an approximately 4 kDa lower molecular mass than brain AChE. This most propably reflects differences in the C-terminal sequences of the two enzymes.

Key words: acetylcholinesterase, amino acid sequence, amino acid analysis, bovine brain, bovine erythrocytes

Abbreviations

AChE

acetylcholinesterase

BChE

butyrylcholinesterase

PI

phosphatidylinositol

GPI

glycosyl-phosphatidylinositol

SDS-PAGE

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

[3H]DFP

[3H]diisopropylfluorophosphate

PVDF

polyvinylidene difluoride

References

  1. Bidlingmeyer, B. A., Cohen, S. A., and Tarvin, T. L. (1984). Rapid analysis of amino acids using pre-column derivatization.J. Chromatogr.33693–104. [DOI] [PubMed] [Google Scholar]
  2. Bon, S., Chang, J.-Y., and Strosberg, A. D. (1986). Identical N-terminal peptide sequences of asymmetric forms and of low-salt-soluble and detergent-soluble amphiphilic dimers of Torpedo acetylcholinesterase. Comparison with bovine acetylcholinesterase.FEBS Lett.209206–211. [DOI] [PubMed] [Google Scholar]
  3. Brimijoin, S., and Rakonczay, Z. (1986). Immunology and molecular biology of the cholinesterases: Current results and prospects.Int. Rev. Neurobiol.28363–410. [DOI] [PubMed] [Google Scholar]
  4. Brodbeck, U. (1986). Amphiphilic acetylcholinesterase: Properties and interactions with lipids and detergents, InProgress in Protein-Lipid Interactions 2 (A. Watts and J. J. DePont, Eds.), Elsevier, Amsterdam, pp. 303–338. [Google Scholar]
  5. Brodbeck, U., Gentinetta, R., and Ott, P. (1981). Purification by affinity chromatography of red cell membrane acetylcholinesterase. InMembrane Proteins (A. Azzi, U. Brodbeck, and P. Zahler, Eds.), Springer-Verlag, Berlin, pp. 13–42. [Google Scholar]
  6. Chatonnet, A., and Lockridge, O. (1989). Comparison of butyrylcholinesterase and acetylcholinesterase.Biochem. J.260625–634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chhajlani, V., Derr, D., Earles, B., Schmell, E., and August, T. (1989). Purification and partial amino acid sequence analysis of human erythrocyte acetylcholinesterase.FEBS Lett.247279–282. [DOI] [PubMed] [Google Scholar]
  8. Doctor, B. P., Smyth, K. K., Ashani, Y., Christner, C. E., De La Hoz, D. M., Ogert, R. A., and Smith, S. W. (1989). Structural and immunochemical properties of fetal bovine serum acetylcholinesterase.Prog. Clin. Biol. Res.289305–316. [PubMed] [Google Scholar]
  9. Ellman, G. L., Courtney, D. K., Andres, V., and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.788–95. [DOI] [PubMed] [Google Scholar]
  10. Gennari, K., Brunner, J., and Brodbeck, U. (1987). Tetrameric detergent-soluble acetylcholinesterase from human caudate nucleus: Subunit composition and number of active sites.J. Neurochem.4912–18. [DOI] [PubMed] [Google Scholar]
  11. Gross, E. (1967). The cyanogen bromide reaction. InMethods in Enzymology 11 (C. H. W. Hirs, Ed.), Academic Press, New York, pp. 238–255. [Google Scholar]
  12. Grossmann, H., and Liefländer, M. (1979). Acetylcholinesterase from bovine erythrocytes. Purification and properties of the enzyme solubilized in the presence and the absence of Triton X-100.Z. Naturforsch.34721–725. [PubMed] [Google Scholar]
  13. Gupta, R., and Jentoft, N. (1989). Analysis of natural and modified amino acids and hexosamines by reversed-phase high performance liquid chromatography.J. Chromatogr.474411–417. [DOI] [PubMed] [Google Scholar]
  14. Hall, L. M., and Spierer, P. (1986). The Ace locus of Drosophila melanogaster: Structural gene for acetylcholinesterase with an unusual 5′ leader.EMBO J.52949–2954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inestrosa, N. C., and Ruiz, G. (1985). Membrane-bound form of acetylcholinesterase activated during postnatal development of the rat somatosensory cortex.Dev. Neurosci.7120–132. [DOI] [PubMed] [Google Scholar]
  16. Inestrosa, N. C., Roberts, W. L., Marshall, T. L., and Rosenberry, T. L. (1987). Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues.J. Biol. Chem.2624441–4444. [PubMed] [Google Scholar]
  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature227680–685. [DOI] [PubMed] [Google Scholar]
  18. Lischwe, M. A., and Ochs, D. (1982). A new method for partial peptide mapping using N-chlorosuccinimide/urea and peptide silver staining in sodium dodecyl sulfate-polyacrylamide gels.Anal. Biochem.127453–457. [DOI] [PubMed] [Google Scholar]
  19. Lockridge, O., Bartels, C. F., Vaughan, T. A., Wong, C. K., Norton, S. E., and Johnson, L. L. (1987). Complete amino acid sequence of human serum cholinesterase.J. Biol. Chem.262549–557. [PubMed] [Google Scholar]
  20. Massoulié, J., and Bon, S. (1982). The molecular forms of cholinesterase and acetylcholinesterase in vertebrates.Annu. Rev. Neurosci.557–106. [DOI] [PubMed] [Google Scholar]
  21. Massoulié, J., and Toutant, J.-P. (1988). Vertebrate cholinesterases: Structure and types of interaction. InHandb. Exp. Pharm. 86 “The Cholinergic Synapse” (V. P. Whittaker, Ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 167–224. [Google Scholar]
  22. Matsudeira, P. (1987). Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes.J. Biol. Chem.26210035–10038. [PubMed] [Google Scholar]
  23. Niday, E., Wang, C. S., and Alaupovic, P. (1977). Studies on the characterization of human erythrocyte acetylcholinesterase and its interaction with antibodies.Biochim. Biophys. Acta459180–193. [DOI] [PubMed] [Google Scholar]
  24. Prody, C. A., Zevin-Sonkin, D., Gnatt, A., Goldberg, O., and Soreq, H. (1987). Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues.Proc. Natl. Acad. Sci.843555–3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rakonczay, Z. (1986). Mammalian brain acetylcholinesterase. InNeuromethods, Vol. 5 (A. A. Boulton, G. B. Baker, and P. H. Yu, Eds.), Humana, Clifton, N.J., pp. 319–360. [Google Scholar]
  26. Rakonczay, Z., and Brimijoin, S. (1985). Immunochemical differences among molecular forms of acetylcholinesterase in brain and blood.Biochim. Biophys. Acta832127–134. [DOI] [PubMed] [Google Scholar]
  27. Rakonczay, Z., Mallol, J., Schenk, H., Vincendon, G., and Zanetta, J. P. (1981). Purification and properties of the membrane-bound acetylcholinesterase from adult rat brain.Biochim. Biophys. Acta657243–256. [DOI] [PubMed] [Google Scholar]
  28. Ralston, J. S., Rush, R. S., Doctor, B. P., and Wolfe, A. D. (1985). Acetylcholinesterase from fetal bovine serum. Purification and characterization of soluble G4 enzyme.J. Biol. Chem.2604312–4318. [PubMed] [Google Scholar]
  29. Rasmussen, A. G., Sorensen, K., Selmer, J., Zeuthen, J., Bjerrum, O. J., Brodbeck, U., and Norgaard-Pedersen, B. (1987). Immunochemical determination of acetylcholinesterase in amniotic fluid—an evaluation of eleven monoclonal antibodies.Clin. Chim. Acta16617–25. [DOI] [PubMed] [Google Scholar]
  30. Roberts, W. L., Kim, B. H., and Rosenberry, T. L. (1987). Differences in the glycolipid membrane anchors of bovine and human erythrocyte acetylcholinesterases.Proc. Natl. Acad. Sci.847817–7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schägger, H., and von Jagow, G. (1987). Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.Anal. Biochem.166368–379. [DOI] [PubMed] [Google Scholar]
  32. Schaller, J., Straub, C., Kämpfer, U., and Rickli, E. E. (1989). Complete amino acid sequence of canine miniplasminogen.Protein Seq. Data Anal.2445–450. [PubMed] [Google Scholar]
  33. Schumacher, M., Camp, S., Maulet, Y., Newton, M., McPhee-Quigley, K., Taylor, S. S., Friedmann, T., and Taylor, P. (1986). Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence.Nature319407–409. [DOI] [PubMed] [Google Scholar]
  34. Sikorav, J.-L., Krejci, E., and Massoulie, J. (1987). cDNA sequences of Torpedo marmorata acetylcholinesterase: Primary structure of the precursor of a catalytic subunit; existence of multiple 5′-untranslated regions.EMBO J.61865–1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sikorav, J.-L., Duval, N., Anselmet, A., Bon, S., Krejci, E., Legay, C., Osterlund, M., Reimund, R., and Massoulié, J. (1988). Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form.EMBO J.72983–2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Silver, A. (1974).The Biology of Cholinesterases, North-Holland, Amsterdam.
  37. Smyth, K. K., De La Hoz, D. M., Christner, C. E., Rush, R. S., De La Hoz, F., and Doctor, B. P. (1988). Amino acid sequence studies on fetal bovine serum acetylcholinesterase.FASEB J.2:A1745. [DOI] [PubMed]
  38. Sorensen, K., Gentinetta, R., and Brodbeck, U. (1982). An amphiphile-dependent form of human brain caudate nucleus acetylcholinesterase: Purification and properties.J. Neurochem.391050–1060. [DOI] [PubMed] [Google Scholar]
  39. Sutton, B. J., and Phillips, D. C. (1983). The three-dimensional structure of the carbohydrate within the Fc fragment of immunoglobulin G.Biochem. Soc. Trans.11130–132. [PubMed] [Google Scholar]
  40. Tarentino, A. L., Gomez, C. M., and Plummer, T. H., Jr. (1985). Deglycosylation of asparaginelinked glycans by peptide: N-glycosidase F.Biochemistry244665–4671. [DOI] [PubMed] [Google Scholar]
  41. Toutant, J.-P., and Massoulié, J. (1988). Vertebrate cholinesterases: Structure and types of interaction. InHandb. Exp. Pharm. 86 “The Cholinergic Synapse” (V. P. Whittaker, Ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 225–265. [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES