Abstract
1. Whole-cell voltage-activated currents from single zona fasciculata (ZF) cells from rat adrenal glands were studied. T- and L-type Ca2+ currents and a slowly inactivating A-type K+ current were the three major currents observed. 2. In freshly isolated cells, the A-type K+ current and the T-type Ca2+ current were predominant. The A-type current was activated at -50 mV and inhibited by 4-amino-pyridine with a half-maximal block (IC50) at 130 microM while the T-type current was activated at -70 mV and blocked by Cd2+, Ni2+ and amiloride with IC50 values of 24.1, 132.4 and 518.9 microM, respectively. 3. Under current clamp, depolarizing current pulses produced a single Ca2+ action potential with Cs+ in the pipette internal solution. Upon replacement of Cs+ by K+, the half-amplitude width of the action potential was shortened and membrane potential oscillations were seen after the spike. 4. In freshly isolated cells and during the first 24 h after plating, the T-type current was observed in all cells, with L-type current being observed in < 2% of cells, even in the presence of (+)SDZ 202,791, a dihydropyridine Ca2+ channel agonist. With time in culture, the T-type current disappeared, and a high-voltage-activated L-type current became increasingly apparent. In cells tested after > 2 days in culture, (+)SDZ 202,791 potentiated L-type current by 407 +/- 12% and the antagonist (-)SDZ 202,791 blocked this increase. The L-type current was activated between -30 and -20 mV and was sensitive to nitrendipine and omega-conotoxin GVIA. 5. Pre-incubation of cultured ZF cells with adrenocorticotrophic hormone (ACTH) or vasoactive intestinal peptide (VIP) for 3 days resulted in a high, sustained level of expression of T-type current, with a mean amplitude of 34.2 +/- 5.5 pA pF-1 for ACTH-treated cells compared with 3.4 +/- 1.8 pA pF-1 for untreated cells. Cycloheximide strongly inhibited this effect. Neither treatment affected L-type current expression. 6. The expression of both Ca2+ current types was unaffected by pre-incubation with 8-bromo-cAMP or forskolin. The protein kinase A antagonist, H89, did not inhibit the ACTH-induced upregulation of T-type Ca2+ currents. 7. It is concluded that the main voltage-dependent currents involved in cell excitability and steroidogenesis in rat adrenal ZF cells are an A-type K+ current and a T-type Ca2+ current. The physiological role and control of expression of L-type Ca2+ channels in rat ZF cells remain less clear.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akaike N., Kanaide H., Kuga T., Nakamura M., Sadoshima J., Tomoike H. Low-voltage-activated calcium current in rat aorta smooth muscle cells in primary culture. J Physiol. 1989 Sep;416:141–160. doi: 10.1113/jphysiol.1989.sp017754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akaike N., Kostyuk P. G., Osipchuk Y. V. Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones. J Physiol. 1989 May;412:181–195. doi: 10.1113/jphysiol.1989.sp017610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arola J., Heikkilä P., Kahri A. I. Biphasic effect of ACTH on growth of rat adrenocortical cells in primary culture. Cell Tissue Res. 1993 Jan;271(1):169–176. doi: 10.1007/BF00297555. [DOI] [PubMed] [Google Scholar]
- BIRMINGHAM M. K., ELLIOTT F. H., VALERE P. H. The need for the presence of calcium for the stimulation in vitro of rat adrenal glands by adrenocorticotrophic hormone. Endocrinology. 1953 Dec;53(6):687–689. doi: 10.1210/endo-53-6-687. [DOI] [PubMed] [Google Scholar]
- Bird I. M., Clyne C. D., Lightly E. R., Williams B. C., Walker S. W. Further characterization of the steroidogenic responsiveness of purified zona fasciculata/reticularis cells from bovine adrenal cortex before and after primary culture: changing responsiveness to phosphoinositidase C agonists. J Endocrinol. 1992 Apr;133(1):21–28. doi: 10.1677/joe.0.1330021. [DOI] [PubMed] [Google Scholar]
- Boll W., Lux H. D. Action of organic antagonists on neuronal calcium currents. Neurosci Lett. 1985 May 23;56(3):335–339. doi: 10.1016/0304-3940(85)90265-4. [DOI] [PubMed] [Google Scholar]
- Brauneis U., Vassilev P. M., Quinn S. J., Williams G. H., Tillotson D. L. ANG II blocks potassium currents in zona glomerulosa cells from rat, bovine, and human adrenals. Am J Physiol. 1991 May;260(5 Pt 1):E772–E779. doi: 10.1152/ajpendo.1991.260.5.E772. [DOI] [PubMed] [Google Scholar]
- Carbone E., Lux H. D. Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones. J Physiol. 1987 May;386:547–570. doi: 10.1113/jphysiol.1987.sp016551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen C. J., McCarthy R. T., Barrett P. Q., Rasmussen H. Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2412–2416. doi: 10.1073/pnas.85.7.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coyne M. D., Pinkney L. Adrenocorticotropin activates barium-conducting channels from bovine adrenocortical zona fasciculata cells in lipid bilayers. Endocrinology. 1991 Jul;129(1):263–269. doi: 10.1210/endo-129-1-263. [DOI] [PubMed] [Google Scholar]
- Durroux T., Gallo-Payet N., Payet M. D. Three components of the calcium current in cultured glomerulosa cells from rat adrenal gland. J Physiol. 1988 Oct;404:713–729. doi: 10.1113/jphysiol.1988.sp017315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enyeart J. J., Mlinar B., Enyeart J. A. T-type Ca2+ channels are required for adrenocorticotropin-stimulated cortisol production by bovine adrenal zona fasciculata cells. Mol Endocrinol. 1993 Aug;7(8):1031–1040. doi: 10.1210/mend.7.8.8232302. [DOI] [PubMed] [Google Scholar]
- Herrington J., Lingle C. J. Kinetic and pharmacological properties of low voltage-activated Ca2+ current in rat clonal (GH3) pituitary cells. J Neurophysiol. 1992 Jul;68(1):213–232. doi: 10.1152/jn.1992.68.1.213. [DOI] [PubMed] [Google Scholar]
- Hess P. Calcium channels in vertebrate cells. Annu Rev Neurosci. 1990;13:337–356. doi: 10.1146/annurev.ne.13.030190.002005. [DOI] [PubMed] [Google Scholar]
- Huguenard J. R., McCormick D. A. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol. 1992 Oct;68(4):1373–1383. doi: 10.1152/jn.1992.68.4.1373. [DOI] [PubMed] [Google Scholar]
- Kaneda M., Wakamori M., Ito C., Akaike N. Low-threshold calcium current in isolated Purkinje cell bodies of rat cerebellum. J Neurophysiol. 1990 May;63(5):1046–1051. doi: 10.1152/jn.1990.63.5.1046. [DOI] [PubMed] [Google Scholar]
- Kojima K., Kojima I., Rasmussen H. Dihydropyridine calcium agonist and antagonist effects on aldosterone secretion. Am J Physiol. 1984 Nov;247(5 Pt 1):E645–E650. doi: 10.1152/ajpendo.1984.247.5.E645. [DOI] [PubMed] [Google Scholar]
- LEVY H., DEANE H. W., RUBIN B. L. Visualization of steroid-3beta-o1-dehydrogenase activity in tissues of intact and hypophysectomized rats. Endocrinology. 1959 Dec;65:932–943. doi: 10.1210/endo-65-6-932. [DOI] [PubMed] [Google Scholar]
- Lymangrover J. R., Matthews E. K., Saffran M. Membrane potential changes of mouse adrenal zona fasciculata cells in response to adrenocorticotropin and adenosine 3',5'-monophosphate. Endocrinology. 1982 Feb;110(2):462–468. doi: 10.1210/endo-110-2-462. [DOI] [PubMed] [Google Scholar]
- Matsunaga H., Maruyama Y., Kojima I., Hoshi T. Transient Ca2+-channel current characterized by a low-threshold voltage in zona glomerulosa cells of rat adrenal cortex. Pflugers Arch. 1987 Apr;408(4):351–355. doi: 10.1007/BF00581128. [DOI] [PubMed] [Google Scholar]
- Matsunaga H., Yamashita N., Maruyama Y., Kojima I., Kurokawa K. Evidence for two distinct voltage-gated calcium channel currents in bovine adrenal glomerulosa cells. Biochem Biophys Res Commun. 1987 Dec 31;149(3):1049–1054. doi: 10.1016/0006-291x(87)90514-6. [DOI] [PubMed] [Google Scholar]
- Matteson D. R., Armstrong C. M. Properties of two types of calcium channels in clonal pituitary cells. J Gen Physiol. 1986 Jan;87(1):161–182. doi: 10.1085/jgp.87.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews E. K., Saffran M. Ionic dependence of adrenal steroidogenesis and ACTH-induced changes in the membrane potential of adrenocortical cells. J Physiol. 1973 Oct;234(1):43–64. doi: 10.1113/jphysiol.1973.sp010333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyers D. E., Barker J. L. Whole-cell patch-clamp analysis of voltage-dependent calcium conductances in cultured embryonic rat hippocampal neurons. J Neurophysiol. 1989 Mar;61(3):467–477. doi: 10.1152/jn.1989.61.3.467. [DOI] [PubMed] [Google Scholar]
- Mlinar B., Biagi B. A., Enyeart J. J. A novel K+ current inhibited by adrenocorticotropic hormone and angiotensin II in adrenal cortical cells. J Biol Chem. 1993 Apr 25;268(12):8640–8644. [PubMed] [Google Scholar]
- Mlinar B., Enyeart J. J. Voltage-gated transient currents in bovine adrenal fasciculata cells. II. A-type K+ current. J Gen Physiol. 1993 Aug;102(2):239–255. doi: 10.1085/jgp.102.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quinn S. J., Brauneis U., Tillotson D. L., Cornwall M. C., Williams G. H. Calcium channels and control of cytosolic calcium in rat and bovine zona glomerulosa cells. Am J Physiol. 1992 Mar;262(3 Pt 1):C598–C606. doi: 10.1152/ajpcell.1992.262.3.C598. [DOI] [PubMed] [Google Scholar]
- Quinn S. J., Cornwall M. C., Williams G. H. Electrical properties of isolated rat adrenal glomerulosa and fasciculata cells. Endocrinology. 1987 Mar;120(3):903–914. doi: 10.1210/endo-120-3-903. [DOI] [PubMed] [Google Scholar]
- Quinn S. J., Cornwall M. C., Williams G. H. Electrophysiological responses to angiotensin II of isolated rat adrenal glomerulosa cells. Endocrinology. 1987 Apr;120(4):1581–1589. doi: 10.1210/endo-120-4-1581. [DOI] [PubMed] [Google Scholar]
- Richard S., Neveu D., Carnac G., Bodin P., Travo P., Nargeot J. Differential expression of voltage-gated Ca(2+)-currents in cultivated aortic myocytes. Biochim Biophys Acta. 1992 Nov 10;1160(1):95–104. doi: 10.1016/0167-4838(92)90042-c. [DOI] [PubMed] [Google Scholar]
- Saez J. M., Morera A. M., Dazord A. Mediators of the effects of ACTH on adrenal cells. Adv Cyclic Nucleotide Res. 1981;14:563–579. [PubMed] [Google Scholar]
- Serebryakov V., Takeda K. Voltage-dependent calcium current and the effects of adrenergic modulation in rat aortic smooth muscle cells. Philos Trans R Soc Lond B Biol Sci. 1992 Jul 29;337(1279):37–47. doi: 10.1098/rstb.1992.0081. [DOI] [PubMed] [Google Scholar]
- Simpson E. R., Waterman M. R. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol. 1988;50:427–440. doi: 10.1146/annurev.ph.50.030188.002235. [DOI] [PubMed] [Google Scholar]
- Storm J. F. Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature. 1988 Nov 24;336(6197):379–381. doi: 10.1038/336379a0. [DOI] [PubMed] [Google Scholar]
- Yaari Y., Hamon B., Lux H. D. Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science. 1987 Feb 6;235(4789):680–682. doi: 10.1126/science.2433765. [DOI] [PubMed] [Google Scholar]
- Yanagibashi K., Kawamura M., Hall P. F. Voltage-dependent Ca2+ channels are involved in regulation of steroid synthesis by bovine but not rat fasciculata cells. Endocrinology. 1990 Jul;127(1):311–318. doi: 10.1210/endo-127-1-311. [DOI] [PubMed] [Google Scholar]
- Yanagibashi K., Papadopoulos V., Masaki E., Iwaki T., Kawamura M., Hall P. F. Forskolin activates voltage-dependent Ca2+ channels in bovine but not in rat fasciculata cells. Endocrinology. 1989 May;124(5):2383–2391. doi: 10.1210/endo-124-5-2383. [DOI] [PubMed] [Google Scholar]
