Abstract
In vitro studies have indicated that several transmitters present in the striatum can regulate presynaptically the release of dopamine (DA) from nerve terminals of the nigrostriatal DA neurons.
The receptors involved in these local regulatory processes are located or not located on DA nerve terminals.
Recentin vivo investigations have demonstrated that the corticostriatal glutamatergic neurons facilitate presynaptically the release of DA and have allowed the analysis of the respective roles of presynaptic events and nerve activity in the control of DA transmission.
Key words: dopamine, caudate nucleus, release, glutamate presynaptic regulation
References
- Besson, M. J., Cheramy, A., Feltz, P., and Glowinski, J. (1969). Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat.Proc. Nat. Acad. Sci. USA62741–748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouyer, J. J., Park, D. H., Joh, T. H., and Pickel, V. M. (1984). Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum.Brain Res.302267–275. [DOI] [PubMed] [Google Scholar]
- Chavez-Noriega, L., Patino, P., and Garcia-Munoz, M. (1986). Excitability changes induced in the striatal dopamine-containing terminals following frontal cortex stimulation.Brain Res.379300–306. [DOI] [PubMed] [Google Scholar]
- Cheramy, A., Leviel, V., and Glowinski, J. (1981). Dendritic release of dopamine in the substantia nigra.Nature289537–542. [DOI] [PubMed] [Google Scholar]
- Cheramy, A., Romo, R., Godeheu, G., Baruch, P., and Glowinski, J. (1986). In vivo presynaptic control of dopamine release in the cat caudate nucleus; II. Facilitatory or inhibitory influence ofl-glutamate.Neuroscience191081–1090. [DOI] [PubMed] [Google Scholar]
- Chesselet, M. F. (1984). Presynaptic regulation of neurotransmitter release in the brain: Facts and hypothesis.Neurosciience12347–375. [DOI] [PubMed] [Google Scholar]
- Chesselet, M. F., Cheramy, A., Romo, R., Desban, M., and Glowinski, J. (1983). GABA in the thalamic motor nuclei modulates dopamine release from the two dopaminergic nigro-striatal pathways in the cat.Exp. Brain Res.51275–282. [DOI] [PubMed] [Google Scholar]
- DeBelleroche, J., Luquiani, Y., and Bradford, H. F. (1979). Evidence for presynaptic cholinergic receptors on dopaminergic terminals: Degeneration studies with 6-hydroxydopamine.Neurosci. Lett.11209–213. [DOI] [PubMed] [Google Scholar]
- Farnebo, L. O., and Hamberger, B. (1971). Drug-induced changes in the release of3H-monoamines from field-stimulated rat brain slices.Acta Physiol. Scand. Suppl.37135–44. [DOI] [PubMed] [Google Scholar]
- Gage, F. H., Dunnett S. B., Stenevi, U., and Bjorklund, A. (1983). Aged rats: Recovery of motor impairments by intrastriatal nigral grafts.Science221966–969. [DOI] [PubMed] [Google Scholar]
- Gerfen, C. R. (1984). The neostriatal mosaic: Compartmentalization of corticostriatal input and striatal output systems.Nature311461–463. [DOI] [PubMed] [Google Scholar]
- Giorguieff, M. F., Kemel, M. L., and Glowinski, J. (1977a). Presynaptic effect ofl-glutamic acid on the release of dopamine in rat striatal slices.Neurosci. Lett.673–77. [DOI] [PubMed] [Google Scholar]
- Giorguieff, M. F., Le Floc'h, M. I., Glowinski, J., and Besson, M. J. (1977b). Involvement of cholinergic presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat.J. Pharmacol. Exp. Ther.200535–544. [PubMed] [Google Scholar]
- Girault, J. A., Barbeito, L., Spampinato, U., Gozlan, H., Glowinski, J. and Besson, M. J. (1986a). In vivo release of endogeneous amino acids from the rat striatum: Further evidence for a role of glutamate and aspartate in corticostriatal neurotransmission.J. Neurochem.4798–106. [DOI] [PubMed] [Google Scholar]
- Girault, J. A., Spampinato, U., Desban, M., Glowinski, J. and Besson, M. J. (1986b). Enhancement of glutamate release in the rat striatum following electrical stimulation of the nigrothalamic pathway.Brain Res.374362–366. [DOI] [PubMed] [Google Scholar]
- Graybiel, A. M. (1986a). Dopamine-containing innervation of the striatum: Subsystems and their striatal correspondents. InRecent Developments in Parkinson's Disease (S. Fahnet al., Eds.), Raven Press, New York, pp. 1–16. [Google Scholar]
- Graybiel, A. M. (1986b). Neuropeptides in the basal ganglia. InNeuropeptides in Neurologic and Psychiatric Diseases (J. B. Martin and J. D. Barchas, Eds.), Raven Press, New York, pp. 135–161. [Google Scholar]
- Helmreich, I., Reimann, W., Hertting, G., and Starke, K. (1982). Are presynaptic dopamine autoreceptors and postsynaptic dopamine receptors in the rabbit caudate nucleus pharmacologically different?Neuroscience71559–1566. [DOI] [PubMed] [Google Scholar]
- Hoffmann, I. S., and Cebeddu, L. X. (1982). Rate and duration of stimulation determine presynaptic effects of haloperiodol on dopaminergic neurons.J. Neurochem.39585–588. [DOI] [PubMed] [Google Scholar]
- Kato, G., Carson, S., Kemel, M. L., Glowinski, J., and Giorguieff, M. F. (1978). Changes in striatal specific3H-atropine binding after unilateral 6-hydroxy-dopamine lesions of nigro-striatal dopaminergic neurones.Life Sci.221607–1614. [DOI] [PubMed] [Google Scholar]
- Koller, K. J., Zaczek, R., and Coyle, J. T. (1984). N-acetyl-aspartyl-glutamate: Regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method.J. Neurochem.431136–1142. [DOI] [PubMed] [Google Scholar]
- Lehmann, J., and Langer, S. Z. (1983). The striatal cholinergic interneuron: Synaptic target of dopaminergic terminals?Neuroscience101105–1120. [DOI] [PubMed] [Google Scholar]
- Mitchell, P. R, and Doggett, N. S. (1980). Modulation of striatal3H-glutamic acid release by dopaminergic drugs.Life Sci.262073–2081. [DOI] [PubMed] [Google Scholar]
- Nieoullon, A., Cheramy, A., and Glowinski, J. (1978). Release of dopamine evoked by electrical stimulation of the motor and visual areas of the cerebral cortex in both caudate nuclei and in the substantia nigra in the cat.Brain Res.14569–83. [DOI] [PubMed] [Google Scholar]
- Nieoullon, A., Kerkerian, L., and Dusticier, N. (1982). Inhibitory effects of dopamine on high-affinity glutamate uptake from rat striatum.Life Sci.301165–1172. [DOI] [PubMed] [Google Scholar]
- Nieoullon, A., Kerkerian, L., and Dusticier, N. (1983). Presynaptic dopaminergic control of high affinity glutamate uptake in the striatum.Neurosci. Lett.43191–196. [DOI] [PubMed] [Google Scholar]
- Pollard, H., Llorens, C., and Schwartz, J. C. (1977). Enkephalin receptors on dopaminergic neurons in rat striatum.Nature268745–747. [DOI] [PubMed] [Google Scholar]
- Quirion, R., Chiueh, C. C., Everist, H. D., and Pert, A. (1985). Comparative localization of neurotensin receptors on nigrostriatal and mesolimbic dopaminergic terminals.Brian Res.327385–389. [DOI] [PubMed] [Google Scholar]
- Reisine, T. D., Nagy, J. I., Beaumont, K., Fibiger, H. C., and Yamamura, H. I. (1979). The localization of receptor binding sites in the substantia nigra and striatum of the rat.Brain Res.177241–252. [DOI] [PubMed] [Google Scholar]
- Reubi, J. C., and Cuenod, M. (1979). Glutamate releasein vitro from cortico-striatal terminals.Brain Res.176185–188. [DOI] [PubMed] [Google Scholar]
- Roberts, P. J., and Sharif, N. A. (1978). Effects ofl-glutamate and related amino acids upon the release of3H-dopamine from rat striatal slicesBrain Res.157391–395. [DOI] [PubMed] [Google Scholar]
- Roberts, P. J., McBean, G. J., Sharif, N. A., and Thomas, E. M. (1982). Striatal glutamatergic function: Modifications following specific lesions.Brain Res.23583–91. [DOI] [PubMed] [Google Scholar]
- Romo, R., and Schultz, W. (1985). Prolonged changes in dopaminergic terminal excitability and short changes in dopaminergic neuron discharge rate after short peripheral stimulation in monkey.Neurosci. Lett.62335–340. [DOI] [PubMed] [Google Scholar]
- Romo, R., Cheramy, A., Godeheu, G., and Glowinski, J. (1984). Distinct commissural pathways are involved in the enhanced release of dopamine induced in the contralateral caudate nucleus and substantia nigra by the unilateral application of GABA in the cat thalamic motor nuclei.Brain Res.30843–52. [DOI] [PubMed] [Google Scholar]
- Romo, R., Cheramy, A., Godeheu, G., and Glowinski, J. (1986a)In vivo presynaptic control of dopamine release in the cat caudate nucleus: I. Opposite changes in neuronal activity and release evoked from thalamic motor nuclei.Neuroscience191067–1079. [DOI] [PubMed] [Google Scholar]
- Romo, R., Cheramy, A., Godeheu, G., and Glowinski, J. (1986b).In vivo presynaptic control of dopamine release in the cat caudate nucleus: III. Further evidence for the implication of cortico-striatal glutamatergic neurons.Neuroscience191091–1099. [DOI] [PubMed] [Google Scholar]
- Rowlands, G. J., and Roberts, P. J. (1980a). Specific calcium-dependent release of endogeneous glutamate from rat striatum is reduced by destruction of the cortico-striatal tract.Exp. Brain Res.39239–240. [DOI] [PubMed] [Google Scholar]
- Rowlands, G. J., and Roberts, P. J. (1980b). Activation of dopamine receptors inhibits calcium-dependent glutamate release from cortico-striatal terminalsin vitro.Eur. J. Pharmacol.62241–242. [DOI] [PubMed] [Google Scholar]
- Spencer, H. J. (1976). Antagonism of cortical excitation of striatal neurons by glutamic acid diethylester: Evidence for glutamic acid as an excitatory transmitter in the rat striatum.Brain Res.10291–101. [DOI] [PubMed] [Google Scholar]
- Takeuchi, H., Young, S. T., and Groves, P. M. (1982). Dopaminergic terminal excitability following arrival of the nerve impulse: The influence of amphetamine and haloperiodol.Brain Res.24547–56. [DOI] [PubMed] [Google Scholar]