Abstract
In slice studies of mature and immature CA1 hippocampal pyramidal cells from rabbit, somatostatin 14 (SS14), the related peptide somatostatin 28(1–12) [SS(1–12)], and the synthetic analogue of somatostatin 14, SMS-201995 (SMS), had similar effects. When pressure-ejected onto cell somata, these peptides elicited depolarizations, often accompanied by action potential discharge. When applied to dendrites, the peptides produced depolarizations or hyperpolarizations.
When a large amount of one of the three somatostatin-related (SS) peptides was applied to the slice at some distance from the impaled cell, hyperpolarizations were observed that were not always blocked by tetrodotoxin (TTX) or low Ca2+. Since SS peptides were also found to depolarize interneurons in area CA1, it seems likely that the hyperpolarizations that were blocked by TTX or low Ca2+ were mediated via excitation of interneurons that in turn hyperpolarized pyramidal cells.
All SS peptides also had long-lasting effects on CA1 pyramidal cells that led to spontaneous firing of action potentials and an increase in the number of action potentials discharged in response to a given depolarizing current pulse; the spontaneous discharge effect was blocked by TTX or low Ca2+ plus Mn2+ and, thus, appeared to have a presynaptic mechanism. However, the increase in discharge in response to a constant depolarizing current pulse was not dependent on intact synaptic transmission and, therefore, was attributable to a direct postsynaptic effect of the SS peptides.
Key words: somatostatin 14, somatostatin 28(1–12), hippocampal slices, pressure ejection, pyramidal cell, interneuron
References
- Alger, B. E., and Nicoll, R. A. (1982a). Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro.J. Physiol.328105–124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alger, B. E., and Nicoll, R. A. (1982b). Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro.J. Physiol.328125–141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen, P., Eccles, J. C., and Loyning, Y. (1964a). Location of postsynaptic inhibitory synapses on hippocampal pyramids.J. Neurophysiol.27592–607. [DOI] [PubMed] [Google Scholar]
- Andersen, P., Eccles, J. C., and Loyning, Y. (1964b). Pathway of postsynaptic inhibition in the hippocampus.J. Neurophysiol.27608–619. [DOI] [PubMed] [Google Scholar]
- Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A., and Mosfeldt-Laursen, A. (1980). Two different responses of hippocampal pyramidal cells to application of gamma-aminobutyric acid.J. Physiol.305279–296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakst, I., Morrison, J. H., and Amaral, D. G. (1985). The distribution of somatostatin-like immunoreactivity in the monkey hippocampal formation.J. Comp. Neurol.236423–442. [DOI] [PubMed] [Google Scholar]
- Bennett-Clarke, C. A., and Joseph, S. A. (1986). Immunocytochemical localization of somatostatin in human brain.Peptides.7877–844. [DOI] [PubMed] [Google Scholar]
- Benoit, R., Bohlen, P., Ling, N., Esch, F., Baird, A., Ying, S. Y., Wehrenberg, W. B., Guillemin, R., Morrison, J. H., Bakhit, C., Koda, L., and Bloom, F. E. (1985). SS-28(1–12)-like peptides. InSomatostatin (Y. Patel and G. Tannenbaum, Eds.), Plenum Press, New York, pp. 89–107. [DOI] [PubMed] [Google Scholar]
- Catalan, R. E., Aragones, M. D., and Martinez, A. M. (1979). Somatostatin effect on cyclic AMP and cyclic GMP levels in rat brain.Biochim. Biophys. Acta586213–216. [Google Scholar]
- Chun, J. J. M., Nakamura, M. J., and Shatz, C. J. (1987). Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons.Nature325617–620. [DOI] [PubMed] [Google Scholar]
- Dodd, J., and Kelly, J. S. (1978). Is somatostatin an excitatory transmitter in the hippocampus?Nature273674–675. [DOI] [PubMed] [Google Scholar]
- Dokas, L. A., Klis, M., Liauw, A., and Coy, D. H. (1985). Characteristics of [D-Trp8]-somatostatin-sensitive B50 phosphorylation.Peptides61101–1107. [DOI] [PubMed] [Google Scholar]
- Djorup, A., Jahnsen, H., and Mosfeldt-Laursen, A. (1981). The dendritic response to GABA in CA1 of the hippocampal slice.Brain Res.219196–201. [DOI] [PubMed] [Google Scholar]
- Feldman, S. C., Dreyfus, C. F., and Lichtenstein, E. S. (1982). Somatostatin neurons in the rodent hippocampus: An in vitro and in vivo immunocytochemical study.Neurosci. Lett.3329–34. [DOI] [PubMed] [Google Scholar]
- Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., and Barnes, C. L. (1984). Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation.Science2251168–1170. [DOI] [PubMed] [Google Scholar]
- Knowles, W. D., and Schwartzkroin, P. A. (1981). Local circuit synaptic interactions in hippocampal brain slices.J. Neurosci.1318–322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel, D. D., and Schwartzkroin, P. A. (1986). Coexistence of glutamic acid decarboxylase with somatostatin or cholecystokinin in CA1 interneurons of rabbit hippocampus.Soc. Neurosci. Abstr.12627. [Google Scholar]
- Lacaille, J.-C., Mueller, A. L., Kunkel, D. D., and Schwartzkroin, P. A. (1987). Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology.J. Neurosci.71979–1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mancillas, J. R., Siggins, G. R., and Bloom, F. E. (1986). Somatostatin selectively enhances acetylcholine-induced excitations in rat hippocampus and cortex.Proc. Natl. Acad. Sci.837518–7521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misgeld, U., Dseiz, R. A., Dodt, H. U., and Lux, H.-D. (1986). The role of chloride transport in postsynaptic inhibition of hippocampal neurons.Science2321413–1415. [DOI] [PubMed] [Google Scholar]
- Morrison, J. H., Benoit, R., Magistretti, P. J., Ling, N., and Bloom, F. E. (1982). Immunohistochemical distribution of pro-somatostatin-related peptides in hippocampus.Neurosci. Lett.34137–142. [DOI] [PubMed] [Google Scholar]
- Moser, A., Reavill, C., Jenner, P., Marsden, C. D., and Cramer, H. (1986). Effects of somatostatin on dopamine sensitive adenylate cyclase activity in the caudate-putamen of the rat.Exp. Brain Res.62567–571. [DOI] [PubMed] [Google Scholar]
- Mueller, A. L., Kunkel, D. D., and Schwartzkroin, P. A. (1986). Electrophysiological actions of somatostatin (SRIF) in hippocampus: An in vitro study.Cell. Mol. Neurobiol.6363–379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mueller, A. L., Taube, J., and Schwartzkroin, P. A. (1984). Development of hippocampal responses to GABA in rabbit hippocampus in vitro.J. Neurosci.4860–867.6707735 [Google Scholar]
- Olpe, H.-R., Balcar, V. J., Bittiger, H., Rink, H., and Sieber, P. (1980). Central actions of somatostatin.Eur. J. Pharm.63127–133. [DOI] [PubMed] [Google Scholar]
- Papadopoulos, G. C., Karamanlidis, A. N., Dinopoulos, A., and Antonopoulos, J. (1986). Somatostatinlike immunoreactive neurons in the hedgehog (Erinaceus europaeus) and the sheep (Ovis aries) central nervous system.J. Comp. Neurol.244174–192. [DOI] [PubMed] [Google Scholar]
- Perlin, J. B., Lothman, E. W., and Geary, W. A. (1987). Somatostatin augments the spread of limbic seizures from the hippocampus.Ann. Neurol.21475–480. [DOI] [PubMed] [Google Scholar]
- Pittman, Q. J., and Siggins, G. R. (1981). Somatostatin hyperpolarizes hippocampal pyramidal cells in vitro.Brain Res.221402–408. [DOI] [PubMed] [Google Scholar]
- Reubi, J. C. (1984). Evidence for two somatostatin-14 receptor types in rat brain cortex.Neurosci. Lett.49259–263. [DOI] [PubMed] [Google Scholar]
- Roberts, G. W., Crow, T. J., and Polak, J. M. (1985). Location of neuronal tangles in somatostatin neurones in Alzheimer's disease.Nature.31492–94. [DOI] [PubMed] [Google Scholar]
- Rossor, M. M., Emson, P. C., Mountjoy, C. Q., Roth, M., and Iversen, L. L. (1980). Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of the Alzheimer's type.Neurosci. Lett.20373–377. [DOI] [PubMed] [Google Scholar]
- Schwartzkroin, P. A. (1975). Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation.Brain Res.85423–436. [DOI] [PubMed] [Google Scholar]
- Schwartzkroin, P. A., and Mathers, L. H. (1978). Physiological and morphological identification of a nonpyramidal hippocampal cell type.Brain Res.1571–10. [DOI] [PubMed] [Google Scholar]
- Somogyi, P., Hodgson, A. J., Smith, A. D., Nunzi, M. G., Gorio, A., and Wu, J.-Y. (1984). Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material.J. Neurosci.42580–2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tran, V. T., Beal, M. F., and Martin, J. B. (1985). Two types of somatostatin receptors differentiated by cyclic somatostatin analogs.Science228492–495. [DOI] [PubMed] [Google Scholar]
- Wong, R. K. S., Prince, D. A., and Basbaum, A. I. (1979). Intradendritic recordings from hippocampal neurons.Proc. Natl. Acad. Sci. USA76986–990. [DOI] [PMC free article] [PubMed] [Google Scholar]
