Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 1991 Feb;11(1):119–130. doi: 10.1007/BF00712804

Structure of rabbit butyrylcholinesterase gene deduced from genomic clones and from cDNA with introns

A Chatonnet 1, T Lorca 1, A Barakat 1, E Aron 1, O Jbilo 1
PMCID: PMC11567352  PMID: 2013056

Abstract

  1. Three clones were isolated from a rabbit genomic library. They covered the entire coding sequence of the rabbit BChE gene. The positions of splice sites between exons 2, 3, and 4 are identical to those found in the human gene (Arpagauset al., 1990). Exon 2 covers 83% of the coding sequence. This contrasts with the small size of exon 3 (167 bp) and large size of introns 2 and 3 (>20 kb each). The active-site serine at position 198 is found in a highly conserved region. Aspartic acids in positions 91 and 170 are conserved in human and rabbit, and one of them could be involved in the calytic triad. Aspartic acid 70, present in the anionic site of human BChE, is also conserved in rabbit BChE. The coding sequences of human and rabbit BChE are 89% identical over 744 bp around the active-site serine.

  2. In addition to the genomic clones, one cDNA clone (BNY1) was isolated. This cDNA was unusual in that it contained intronic sequences. The insert of 1 kb contained 167 coding bases homologous to the nucleotide sequence 1434 to 1600 of human cDNA and corresponded to exon 3 of the BChE gene. On each side of this coding region, consensus sequences of intron-exon boundaries were found.

  3. The presence of large-size transcripts in Northern blots and the existence of a cDNA copy of unprocessed mRNA found in the BNY1 clone suggest a slow processing of transcripts. A genomic sequence unspliced in a cDNA ofTorpedo AChE could give a transmembrane domain (Sikoravet al., 1988); the corresponding sequence in rabbit BChE gene, also found in a cDNA, had no homology withTorpedo AChE but could be translated in a hydrophobic C-terminal domain if maintained in mature mRNA.

Key words: rabbit, butyrylcholinesterase gene, cDNA, genomic clones, introns, splicing, repetitive element

References

  1. Arpagaus, M., Chatonnet, A., Rodgers, L., Venta, P., La Du, B. N., and Lockridge O. (1989). Genomic clones for human butyrylcholinesterase.J. Cell Biol.107:521a.
  2. Arpagaus, M., Kott, M., Vatsis, K. P., Bartels, C. F., La Du, B. N., and Lockridge, O. (1990). Structure of the gene for human butyrylcholinesterase. Evidence for a single copy.Biochemistry29124–131. [DOI] [PubMed] [Google Scholar]
  3. Atack, J. R., Perry, E. K., Bonham, J. R., Candy, J. M., and Perry, R. H. (1986). Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system.J. Neurochem.47263–277. [DOI] [PubMed] [Google Scholar]
  4. Boggaram, V., Qing, K., and Mendelson, C. R. (1988). The major apoprotein of rabbit pulmonary surfactant.J. Biol. Chem.2632939–2947. [PubMed] [Google Scholar]
  5. Bon, S., Toutant, J.-P., Méflah, K., and Massoulié, J. (1988a). Amphiphilic and nonamphiphilic forms of Torpedo cholinesterases. I. Solubility and aggregation properties.J. Neurochem.51776–785. [DOI] [PubMed] [Google Scholar]
  6. Bon, S., Toutant, J.-P., Méflah, K., and Massoulié, J. (1988b). Amphiphilic and nonamphiphilic forms of Torpedo cholinesterases. II. Electrophoretic variants and phosphatidylinositol phospholipase C-sensitive and insensitive forms.J. Neurochem.51786–794. [DOI] [PubMed] [Google Scholar]
  7. Chatonnet, A., and Lockridge, O. (1989). Comparison of butyrylcholinesterase and acetylcholinesterase.Biochem. J.260 625–634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feinberg, A. P., and Vogelstein, B. (1984). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem.137266–267. [DOI] [PubMed] [Google Scholar]
  9. Fournier, D., Karch, F., Bride, J. M., Hall, L. M. C., Bergé, J. B., and Spierer, P. (1989).Drosophila melanogaster acetylcholinesterase gene: Structure, evolution and mutations.J. Mol. Biol.21015–22. [DOI] [PubMed] [Google Scholar]
  10. Gibney, G., MacPhee-Quigley, K., Thompson, B., Vedvick, T., Low, M. G., Taylor, S. S., and Taylor, P. (1988). Divergence in primary structure between the molecular forms of acetylcholinesterase.J. Biol. Chem.2631140–1145. [PubMed] [Google Scholar]
  11. Kroon, P. A., DeMartino, J. A., Thompson, G. M., and Chao, Y.-S. (1986). Molecular cloning of partial cDNAs for rabbit liver apolipoprotein B and the regulation of its mRNA levels by dietary cholesterol.Proc Natl. Acad. Sci. USA835071–5075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kyte, J., and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein.J. Mol. Biol.157105–132. [DOI] [PubMed] [Google Scholar]
  13. Lockridge, O., Bartels, C. F., Vaughan, T. A., Wong, C. K., Norton, S. E., and Johnson, L. L. (1987). Complete amino acid sequence of human serum cholinesterase.J. Biol. Chem.262549–557. [PubMed] [Google Scholar]
  14. Main, A. R., McKnelly, S. C., and Burgess-Miller, S. K. (1977). A subunit-sized butyrylcholinesterase present in high concentrations in pooled rabbit serum.Biochem. J.167 367–376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Malthièry, Y., Marriq, C., Bergé-Lefranc, J. L., France, J.-L., Henry, M., Lejeune, P.-J., Ruf, J., and Lissitzky, S. (1989). Thyroglobulin structure and function: Recent advances.Biochimie71195–210. [DOI] [PubMed] [Google Scholar]
  16. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982).Molecular Cloning:A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. [Google Scholar]
  17. Massoulié, J., and Toutant, J. P. (1988). InHandbook Exp. Pharmacol. (V. P. Whittaker, Ed.), Springer-Verlag, Berlin, pp. 167–224. [Google Scholar]
  18. Maulet, Y., Camp, S., Gibney, G., Rachinsky, T., Ekstrom, T. J., and Taylor, P. (1990). Single gene encodes glycophospholipid-anchored and asymmetric acetylcholinesterase forms: Alternative coding exons contain inverted repeat sequences.Neuron4289–301. [DOI] [PubMed] [Google Scholar]
  19. McGuire, M., Nogueira, C., Bartels, C. F., Lightstone, H., Hajra, A., Van Der Spek, A. F. L., and Lockridge, O. (1989). Identification of the structural mutation responsible for the dibucaineresistant (atypical) variant form of human serum cholinesterase.Proc. Natl. Acad. Sci. USA86953–957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McTiernan, C., Adkins, S., Chatonnet, A., Vaughan, T. A., Bartels, C. F., Kott, M., Rosenberry, T. L., La Du, B. N., and Lockridge, O. (1987). Brain cDNA clone for human cholinesterase.Proc Natl. Acad. Sci. USA846682–6686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mercken, L., Simons, M.-J., Brocas, H., and Vassart, G. (1989). Alternative splicing may be responsible for heterogeneity of thyroglobulin structure.Biochimie71223–226. [DOI] [PubMed] [Google Scholar]
  22. Prody, C. A., Zevin-Sonkin, D., Gnatt, A., Goldberg, O., and Soreq, H. (1987). Isolation and characterization of full length cDNA clones coding for cholinesterase from fetal human tissues.Proc. Natl. Acad. Sci. USA843555–3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rebière, M.-C., Marche, P. N., and Kindt, T. J. (1987). A rabbit class I major histocompatibility complex gene with a T cell-specific expression pattern.J. Immunol.1392066–2074. [PubMed] [Google Scholar]
  24. Rush, R. S., Main, A. R., Miller, S. K., and Kilpatrick, B. F. (1980). Resolution and purification of two monomeric butyrylcholinesterases from rabbit liver.J. Biol. Chem.2557155–7160. [PubMed] [Google Scholar]
  25. Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain terminating inhibitors.Proc. Natl. Acad. Sci. USA745453–5467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schumacher, M., Maulet, Y., Camp, S., and Taylor, P. (1988). Multiple messenger RNA species give rise to the structural diversity in acetylcholinesterase.J. Biol. Chem.26318979–18987. [PubMed] [Google Scholar]
  27. Sikorav, J. L., Krejci, E., and Massoulié, J. (1987). cDNA sequences ofTorpedo marmorata acetylcholinesterase: Primary structure of the precursor of a catalytic sunit; Existence of multiple 5′-untranslated regions.EMBO J.61865–1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sikorav, J. L., Duval, N., Anselmet, A., Bon, S., Krejci, E., Legay, C., Osterlund, M., Reimund, B., and Massoulié, J. (1988). Complex alternative splicing of acetylcholinesterase transcripts inTorpedo electric organ; Primary structure of the precursor of the glycolipid-anchored dimeric form.EMBO J.7 2983–2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sittisombut, N., Mordacq, J., and Knight, K. L. (1988). Rabbit MHC. II. Sequence analysis of the R-DPα- andβ-genesJ. Immunol.1403237–3243. [PubMed] [Google Scholar]
  30. Tam, Y. C., Chopra, A., Hassan, M., and Thirion, J.-P. (1988). Cloning, nucleotide sequence and characterization of a New Zealand rabbit metallothionein-I gene.Biochem. Biophys. Res. Comm.153209–216. [DOI] [PubMed] [Google Scholar]
  31. Toutant, J. P., and Massoulié, J. (1988). InHandbood Exp. Pharmacol. (V. P. Whittaker, Ed.) Springer-Verlag, Berlin, pp. 225–265. [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES