Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 1987 Dec;7(4):381–390. doi: 10.1007/BF00733790

Alteration of the acetylcholine response by intra- and extracellular serotonin application in intracellularly perfused neurons ofLymnaea stagnalis

Tigran M Turpaev 1, Olga P Yurchenko 1, Nikita G Grigoriev 1
PMCID: PMC11567355  PMID: 2837328

Abstract

  1. The effect of serotonin on the acetylcholine (ACh) response has been studied by means of voltage clamp and intracellular perfusion in unidentified isolated neurons from parietal and visceral ganglia ofLymnaea stagnalis.

  2. In most cells studied serotonin added to the internal or external solution decreases the response to ACh.

  3. In other neurons serotonin added to the intracellular solution increases the response to ACh; when it is added extracellularly it produces the opposite effect on the same cells.

  4. The decreasing effect of serotonin on ACh currents is mimicked by cyproheptadine, an antagonist of serotonin receptors, and by the intracellular application of cyclic AMP (cAMP) forskolin.

  5. The enhancing effect of intracellularly applied serotonin on ACh currents is blocked by cyproheptadine and is not obtained by the intracellular administration of cAMP and forskolin. In some cells the enhancing effect of serotonin appears after forskolin.

  6. The results suggest a modulating effect of serotonin on cholinergic synaptic transmission in the nervous system of mollusks. The possible existence of intracellular serotonin receptors is discussed.

Key words: gastropod neurons, intracellular perfusion, voltage clamp, serotonin, acetylcholine, forskolin, cyclic AMP, cyproheptadine, intracellular neurotransmitter receptors

References

  1. Aguayo, L. G., Pazhenchenvsky, B., Daly, J. M., and Albuquerque, E. X. (1981). The ionic channel of the acetylcholine receptor. Regulation by sites outside and inside the cell membrane which are sensitive to quaternary ligands.Mol. Pharmacol.20345–355. [PubMed] [Google Scholar]
  2. Akopyan, A. R., Chemeris, N. K., Il'in, V. I., and Veprintsev, B. N. (1980). Serotonin, dopamine and intracellular cyclic AMP inhibit the responses of nicotinic cholinergic membrane in snail neurons.Brain Res.201480–484. [DOI] [PubMed] [Google Scholar]
  3. Buznicov, G. A. (1984). The action of neurotransmitters and related substances on early embryogenesis.Pharmacol. Ther.2523–59. [DOI] [PubMed] [Google Scholar]
  4. Cedar, H., and Schwartz, J. N. (1972). Cyclic adenosine monophosphate in the nervous system of Aplysia californica. 2. Effect of serotonin and dopamine.J. Gen. Physiol.60570–587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drummond, A. H., Bucher, F., and Levitan, I. B. (1980). Distribution of serotonin and dopamine receptor in Aplysia tissues: Analysis by (H3)LSD binding and adenylate cyclase stimulation.Brain Res.184163–177. [DOI] [PubMed] [Google Scholar]
  6. Gromov, L. A., Krivotorov, S. V., and Skriyma, R. N. (1983). Effects of morphine and opioid peptides on sensitivity to acetylcholine of dialysed snail neurons.Neuroscience8855–860. [DOI] [PubMed] [Google Scholar]
  7. Kostenko, M. A., Geletyuk, V. I., and Veprintsev, B. N. (1974). Completely isolated neurons in the mollusc Lymnaea stagnalis. A new objective for nerve cell biology investigation.Comp. Biochem. Physiol.44A89–100. [DOI] [PubMed] [Google Scholar]
  8. Kostyuk, P. G., Krischtal, O. A., and Pidoplichko, V. I. (1981). Intracellular perfusion.J. Neurosci. Methods4201–210. [DOI] [PubMed] [Google Scholar]
  9. Krnjevic, K. (1978). Intracellular actions of a transmitters. InIonotphoresis and Transmitter Mechanism in the Mammalian Central Nervous System (Ryall and Kelly, Eds.), Elsevier, Amsterdam, pp. 155–157. [Google Scholar]
  10. Krnjevic, K., Puil, E., and Werman, R. (1976). Is cyclic guanosine monophosphate the internal second messenger for cholinergic action on central neurons.Can. J. Physiol. Pharmacol.54172–176. [DOI] [PubMed] [Google Scholar]
  11. Krnjevic, K., Lamour, G., McDonald, J. T., and Nistri, A. (1978). Intracellular actions of monoamine transmitters.Can. J. Physiol. Pharmacol.56869–900. [DOI] [PubMed] [Google Scholar]
  12. Lefkowitz, R. I., Stadel, I. M., Cerione, R. A., Strulovich, B., and Caron, M. C. (1984). Structure and function ofβ-adrenergic receptors: Regulation on the molecular level.Adv. Cycl. Nucl. Res.1719–28. [PubMed] [Google Scholar]
  13. Levitan, I. B. (1978). Adenylate cyclase in isolated Helix and Aplysia neuronal cell bodies: Stimulation by serotonin and peptide-containing extract.Brain Res.154404–408. [DOI] [PubMed] [Google Scholar]
  14. Manukhin, B. N., and Turpaev, T. M. (1971). The problem of identity of acetylcholine, serotonin and adrenaline receptors.J. Evolutsion. Biokhim. Fiziol.7229–231 (Russian). [Google Scholar]
  15. Peroutka, S. J., and Snyder, S. H. (1983). Multiple serotonin receptor and their physiological significance.Fed. Proc.42213–217. [PubMed] [Google Scholar]
  16. Poskonova, M. A., Akopjan, A. R., and Chemeris, N. K. (1981). Diffusion of acetylcholine through neurons membrane.Dokl. AN SSSR2571496–1499 (Russian). [Google Scholar]
  17. Sakharov, D. A., Turpaev, T. M., and Rakic, L. (1975). Effect of intracellular dopamine injection on endogenic activity Aplisia bursting neuron R15.Dokl. AN SSSR2211481–1482 (Russian). [PubMed] [Google Scholar]
  18. Seamon, K. B., Padgett, W., and Daly, J. W. (1981). Forskolin: Unique diterpene activator of adenylate cyclase in membranes in intact cells.Proc. Natl. Acad. Sci. USA783363–3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shmukler, Yu. B., Grigoriev, N. G., Buznikov, G. A., and Turpaev, T. M. (1984). Specific inhibition of cleavage division in Xenopus laevis by the microinjection of propranolol.Dokl. AN SSSR274994–997 (Russian). [PubMed] [Google Scholar]
  20. Simmons, L. K., and Koester, J. (1986). Serotonin enhances the excitatory acetylcholine response in the RB cell cluster of Aplysia californica.J. Neurosci.6774–781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tauc, L., and Baux, G. (1982). Are there intracellular acetylcholine receptors in the cholinergic synaptic nerve terminals?J. Physiol. (Paris)78336–372. [PubMed] [Google Scholar]
  22. Turpaev, T. M. (1978). Studies of the cholinergic processes in the frog heart. InMembrane Transport Processes (D. C. Tosteson and Yu. Ovchinnikov, Eds.), Raven Press, New York, Vol. 2, pp. 185–206. [Google Scholar]
  23. Turpaev, T. M., Yurchenko, O. P., and Grigoriev, N. G. (1985). Change in response to the extracellular application of acetylcholine at the intracellular perfusion of isolated neurons by biogenic amines.Dokl. AN SSSR2801495–1498 (Russian). [PubMed] [Google Scholar]
  24. Turpaev, T. M., Yurchenko, O. P., and Grigoriev, N. G. (1986). Change of response to acetylcholine of Lymnaea stagnalis neurons under the effect of extra- and intracellular perfusion of serotonin.Neurophysiologia18326–332 (Russian). [Google Scholar]
  25. Yurchenko, O. P., and S.-Rozsa, K. (1984). Modulatory effect of serotonin on the acetylcholine sensitivity of identified neurons in the brain of Helix pomatia.Comp. Biochem. Physiol.77C127–133. [DOI] [PubMed] [Google Scholar]
  26. Yurchenko, O. P., and Turpaev, T. M. (1983). Effect of substances altering intracellular cAMP content on frog heart acetylcholine sensitivity.Dokl. AN SSSR2701013–1016 (Russian). [PubMed] [Google Scholar]
  27. Yurchenko, O. P., Turpaev, T. M., Konjevic, Dj., Grigoriev, N. G., and Rakic, Lj. (1985). Effect of intracellular injection of dopamine to endogenic activity and acetylcholine response of identified bursting neurons of Aplysia.Dokl. AN SSSR284248–253 (Russian). [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES