Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 1986 Dec;6(4):407–420. doi: 10.1007/BF00711409

Depression of neuron responses to acetylcholine by combined application of norepinephrine and substrates of the tricarboxylic acid cycle

A A Andreev 1, C A Vulfius 1, A Yu Budantsev 1, M N Kondrashova 1, E V Grishina 1
PMCID: PMC11567386  PMID: 3829103

Abstract

  1. The possible relationship between the function of nicotinic acetylcholine receptors inLymnaea stagnalis neurons and energy metabolism was studied. Oxidative phosphorylation was activated by treatment of neurons with substrates of the tricarboxylic acid cycle and norepinephrine.

  2. Transmembrane currents induced by acetylcholine in isolated neurons were measured by voltage clamp. Succinate dehydrogenase activity was determined histochemically in the same neurons. Cyclic adenosine monophosphate concentration in ganglia were assayed by the protein saturation method of Gilman (1970).

  3. When used alone, succinate depressed the responses of about 50% of neurons to acetylcholine. Norepinephrine did not affect the acetylcholine-induced currents but almost doubled the inhibitory action of succinate. The mixture of norepinephrine and isocitrate also diminished the responses to acetylcholine but to a lesser extent than norepinephrine with succinate.

  4. A short-term exposure of the ganglia to succinate with norepinephrine led to the activation of succinate dehydrogenase in neurons and a threefold increase in cyclic adenosine monophosphate concentrations in ganglia. When used alone, norepinephrine doubled the cyclic adenosine monophosphate concentration.

  5. The results obtained suggest energy-dependent regulation of acetylcholine receptors.

Key words: acetylcholine receptors, energy metabolism, succinate, norepinephrine, molluscan neurons

References

  1. Akasu, T., and Koketsu, K. (1985). Effect of adenosine triphosphate on the sensitivity of the nicotinic acetylcholine receptor in the bullfrog sympathetic ganglion cell.Brit. J. Pharmacol.84525–531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akopyan, A. R., Chemeris, N. K., Iljin, V. I., and Veprintsev, B. N. (1980). Serotonin, dopamine and intracellular cyclic AMP inhibit the responses of nicotinic cholinergic membrane in snail neurons.Brain Research201480–484. [DOI] [PubMed] [Google Scholar]
  3. Albuquerque, E. X., Deshpande, S. S., Aracava, Y., Alkodon, M., and Daly, J. W. (1986). A possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcholine receptor. A study with forskolin and its analogs.FEBS Lett.199113–120. [DOI] [PubMed] [Google Scholar]
  4. Andreev, A. A., Veprintsev, B. N., and Vulfius, C. A. (1984). Two-component desensitization of nicotinic receptors induced by acetylcholine agonists inLymnaea stagnalis neurones.J. Physiol. (Lond.)353375–391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andreev, A., A., Vulfius, C. A., Kondrashova, M. N., and Veprintsev, B. N. (1981). Regulation of acetylcholine receptor function in snail neurones by succinate and noradrenaline.Dokl. Akad. Nauk SSSR2581466–1469 (in Russian). [PubMed] [Google Scholar]
  6. Arvanov, V. L., and Ayrapetyan, S. N. (1980). On the action of ouabain on acetylcholine receptors of the snail giant neurone membrane.Dokl. Akad. Nauk SSSR251222–226 (in Russian).6245844 [Google Scholar]
  7. Babsky, A. M., Kondrashova, M. N., and Shostakovskaja, I. V. (1985). Action and afteraction of adrenaline on respiration of rat liver mitochondria.Fiziologicheskii Zh. (Kiev)31301–306 (in Russian). [PubMed] [Google Scholar]
  8. Bloch, R. J. (1979). Dispersal and reformation of acetylcholine receptor clusters of cultured rat myotubes treated with inhibitors of energy metabolism.J. Cell Biol.82626–643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Budantsev, A. Yu., and Zharikova, A. D. (1976). On the method of Glenner for the histochemical demonstration of the monoamine oxidase (MAO).Histochemistry48335–345. [DOI] [PubMed] [Google Scholar]
  10. Chance, B. C., and Hollunger, G. (1961). The interaction of energy and electron transfer reactions in mitochondria.J. Biol. Chem.2361534–1584. [PubMed] [Google Scholar]
  11. Chemeris, N. K., Kazachenko, V. N., Kislov, A. N., and Veprintsev, B. N. (1982). Inhibition of acetylcholine responses by intracellular calcium inLymnaea stagnalis neurones.J. Physiol. (Lond.)3231–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ewald, D. A. (1976). Potentiation of postjunctional cholinergic sensitivity of rat diaphragm muscle by high-energy-phosphate adenine nucleotides.J. Membrane Biol.2947–65. [DOI] [PubMed] [Google Scholar]
  13. Gilman, A. G. (1970). A protein binding assay for adenosine 3′:5′-cyclic monophosphate.Proc. Nat. Acad. Sci. USA67305–312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gordon, A. S., Davis, C. G., Milfay, D., and Diamond, I. (1977). Phosphorylation of acetylcholine receptor by endogenous membrane protein kinase in receptor-enriched membranes ofTorpedo californica.Nature (Lond.)267539–540. [DOI] [PubMed] [Google Scholar]
  15. Gordon, A. S., Davis, C. G., Milfay, D., Kaur, J., and Diamond, I. (1980). Membrane-bound protein kinase activity in acetylcholine receptor-enriched membranes.Biochim. Biophys. Acta600421–431. [DOI] [PubMed] [Google Scholar]
  16. Huganir, R. L., and Greengard, P. (1983). cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor.Proc. Nat. Acad. Sci. USA801130–1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iljin, V. I., and Bregestovski, P. D. (1977). Chemical nature of functional cholinoreceptor groups ofLymnaea stagnalis neurons.Acta Physiol. Hung.49221–230. [PubMed] [Google Scholar]
  18. Kazachenko, V. N., Musienko, V. S., Gakhova, E. N., and Veprintsev, B. N. (1979). Catecholamine activation of electrogenous Na+,K+-pump in identified neurones ofLymnaea stagnalis L.Comp. Biochem. Physiol.63C67–72. [Google Scholar]
  19. Kondrashova, M. N., Evtodienko, Yu. V., and Gulkhandanjan, A. V. (1977). Opposite reactions of high-and low-energized mitochondria. InMitochondria: Energy Accumulation and Regulation of Enzyme Processes (Severin, S. E., Ed.), Nauka, Moscow, pp. 56–67 (in Russian). [Google Scholar]
  20. Kostenko, M. A. (1980). Ionic regulation of neuron differentiation and regeneration in culture.Uspekhi Sovr. Biologii90221–235 (in Russian). [PubMed] [Google Scholar]
  21. Kostenko, M. A., Geletyuk, V. I., and Veprintsev, B. N. (1974). Completely isolated neurones in the molluscLymnaea stagnalis. A new objective for nerve cell biology investigation.Comp. Biochem. Physiol.49A89–100. [DOI] [PubMed] [Google Scholar]
  22. Libby, P., and Goldberg, A. L. (1981). Comparison of the control and pathways for degradation of the acetylcholine receptor and average protein in cultured muscle cells.J. Cell Physiol.107185–194. [DOI] [PubMed] [Google Scholar]
  23. Nelson, N., Anholt, R., Lindstrom, J., and Montal, M. (1980). Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers.Proc. Nat. Acad. Sci. USA773057–3061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nestler, E. J., and Greengard, P. (1983). Protein phosphorylation in the brain.Nature (Lond.)305583–588. [DOI] [PubMed] [Google Scholar]
  25. Nistratova, S. N. (1972). The role of phosphate groups in the mechanism of acetylcholine receptor desensitization in the heart ofAnodonta.Fiziol. Zh. SSSR58563–570 (in Russian).5027252 [Google Scholar]
  26. Nistratova, S. N. (1980). Regulatory mechanisms of cholinergic transmission in the heart of bivalve molluscs. InNeurotransmitters: Comparative Aspects (Salánki, J., and Turpaev, T. M., eds.), Akad. Kiadó, Budapest, pp. 385–403. [Google Scholar]
  27. Pearse, A. G. E. (1960).Histochemistry: Theoretical and Applied, 2nd ed., Churchill Ltd., London. [Google Scholar]
  28. Steiner, A. L., Pagliara, A. S., Chase, L. R., and Kipnis, D. M. (1972a). Radioimmunoassay for cyclic nucleotides. II. Adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in mammalian tissues and body fluids.J. Biol. Chem.2471114–1120. [PubMed] [Google Scholar]
  29. Steiner, A. L., Parker, C. W., and Kipnis, D. M. (1972b). Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides.J. Biol. Chem.2471106–1113. [PubMed] [Google Scholar]
  30. Tank, D. W., Huganir, R. L., Greengard, P., and Webb, W. W. (1983). Patch-recorded single-channel currents of the purified and reconstitutedTorpedo acetylcholine receptor.Proc. Nat. Acad. Sci. USA805129–5133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Teichberg, V. I., Sobel, A., and Changeux, J.-P. (1977).In vitro phosphorylation of the acetylcholine receptor.Nature (Lond.)267540–542. [DOI] [PubMed] [Google Scholar]
  32. Veprintsev, B. N., Gakhova, E. N., Kazachenko, V. N., and Musienko, V. S. (1980). Catecholamines activate ionic transport in the cells. Catecholamines do not open ionic channels but activate ionic pump in the membrane of giant neurones of molluscLimnaea stagnalis. InAminergic and Peptidergic Receptors (Vizi, E. S., and Wolleman, M., eds.), Akad. Kiadó, Budapest, pp. 133–150. [Google Scholar]
  33. Weiner, M. W., and Lardy, H. A. (1973). Reduction of pyridine nucleotide induced by adenosine diphosphate in kidney mitochondria.J. Biol. Chem.2487682–7687. [PubMed] [Google Scholar]
  34. Yurchenko, O. P., and S.-Rózsa, K. (1984). Modulatory effect of serotonin on the acetylcholine sensitivity of identified neurons in the brain ofHelix pomatia L.Comp. Biochem. Physiol.77C127–133. [DOI] [PubMed] [Google Scholar]
  35. Zeimal, E. V., and Vulfius, C. A. (1967). The action of cholinomimetics and cholinolytics on the Gastropod neurons. InNeurobiology of Invertebrates (Salánki, J., ed.), Akad. Kiadó, Budapest, pp. 255–264. [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES