Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Nov 1;488(Pt 3):753–760. doi: 10.1113/jphysiol.1995.sp021006

Mesenteric blood pressure profile of conscious, freely moving rats.

J Fenger-Gron 1, M J Mulvany 1, K L Christensen 1
PMCID: PMC1156740  PMID: 8576864

Abstract

1. Blood pressure has been measured in the aorta and at four points in the mesenteric circulation of conscious, freely moving rats under physiological, resting conditions. 2. Using small polythene catheters, blood pressure was measured simultaneously in the aorta and either distally in the superior mesenteric artery (group A), at the base of a mesenteric arterial arcade (vessel diameter ca 100 microns) (group B), at the base of a mesenteric venous arcade (group C) or distally in the superior mesenteric vein (group D). Local blood flow distribution proximal and distal to the measurement point was restored after the cannulations through appropriate ligations. 3. In conscious animals 5-17 h after surgery, systemic mean blood pressure was 121 +/- 2 mmHg. Local pressures at the four locations (as a percentage of systemic pressure) were: 95 +/- 1% in group A, 64 +/- 2% in group B, 13 +/- 1% in group C and 7 +/- 1% in group D. Thus, large arteries dissipated 5% of the total pressure drop, arcade small arteries 31%, the intramural circulation 51%, arcade veins 6% and the remaining veins plus the hepatic circulation 7%. 4. Immediately after surgery, the corresponding pressure drops were 4, 16, 66, 5 and 9%, respectively, thus emphasizing that the pressure profile can be profoundly affected by surgery and anaesthesia. 5. The data indicate that under resting conditions in conscious, freely moving rats, half the mesenteric vascular resistance resides outside the intramural circulation, primarily in the arcade small arteries.

Full text

PDF
753

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohlen H. G. Intestinal microvascular adaptation during maturation of spontaneously hypertensive rats. Hypertension. 1983 Sep-Oct;5(5):739–745. doi: 10.1161/01.hyp.5.5.739. [DOI] [PubMed] [Google Scholar]
  2. Christensen K. L., Mulvany M. J., Jespersen L. T. Can mean arterial pressure be estimated from measurements of systolic and diastolic blood pressure, and vice versa? J Hypertens. 1990 Apr;8(4):321–326. doi: 10.1097/00004872-199004000-00005. [DOI] [PubMed] [Google Scholar]
  3. Christensen K. L., Mulvany M. J. Mesenteric arcade arteries contribute substantially to vascular resistance in conscious rats. J Vasc Res. 1993 Mar-Apr;30(2):73–79. doi: 10.1159/000158978. [DOI] [PubMed] [Google Scholar]
  4. Christensen K. L., Mulvany M. J. Perindopril changes the mesenteric pressure profile of conscious hypertensive and normotensive rats. Hypertension. 1994 Mar;23(3):325–328. doi: 10.1161/01.hyp.23.3.325. [DOI] [PubMed] [Google Scholar]
  5. Davis M. J. Control of bat wing capillary pressure and blood flow during reduced perfusion pressure. Am J Physiol. 1988 Nov;255(5 Pt 2):H1114–H1129. doi: 10.1152/ajpheart.1988.255.5.H1114. [DOI] [PubMed] [Google Scholar]
  6. Davis M. J., Ferrer P. N., Gore R. W. Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch. Am J Physiol. 1986 Feb;250(2 Pt 2):H291–H303. doi: 10.1152/ajpheart.1986.250.2.H291. [DOI] [PubMed] [Google Scholar]
  7. DeLano F. A., Schmid-Schönbein G. W., Skalak T. C., Zweifach B. W. Penetration of the systemic blood pressure into the microvasculature of rat skeletal muscle. Microvasc Res. 1991 Jan;41(1):92–110. doi: 10.1016/0026-2862(91)90011-y. [DOI] [PubMed] [Google Scholar]
  8. Fronek K., Zweifach B. W. Microvascular pressure distribution in skeletal muscle and the effect of vasodilation. Am J Physiol. 1975 Mar;228(3):791–796. doi: 10.1152/ajplegacy.1975.228.3.791. [DOI] [PubMed] [Google Scholar]
  9. Furness J. B., Marshall J. M. Correlation of the directly observed responses of mesenteric vessles of the rat to nerve stimulation and noradrenaline with the distribution of adrenergic nerves. J Physiol. 1974 May;239(1):75–88. doi: 10.1113/jphysiol.1974.sp010556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gore R. W., Bohlen H. G. Microvascular pressures in rat intestinal muscle and mucosal villi. Am J Physiol. 1977 Dec;233(6):H685–H693. doi: 10.1152/ajpheart.1977.233.6.H685. [DOI] [PubMed] [Google Scholar]
  11. Hill M. A., Simpson B. E., Meininger G. A. Altered cremaster muscle hemodynamics due to disruption of the deferential feed vessels. Microvasc Res. 1990 May;39(3):349–363. doi: 10.1016/0026-2862(90)90048-v. [DOI] [PubMed] [Google Scholar]
  12. Hill M. A., Trippe K. M., Li Q. X., Meininger G. A. Arteriolar arcades and pressure distribution in cremaster muscle microcirculation. Microvasc Res. 1992 Jul;44(1):117–124. doi: 10.1016/0026-2862(92)90106-y. [DOI] [PubMed] [Google Scholar]
  13. Hébert M. T., Marshall J. M. Direct observations of effects of baroreceptor stimulation on mesenteric circulation of the rat. J Physiol. 1988 Jun;400:29–44. doi: 10.1113/jphysiol.1988.sp017108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lindbom L., Tuma R. F., Arfors K. E. Blood flow in the rabbit tenuissimus muscle. Influence of preparative procedures for intravital microscopic observation. Acta Physiol Scand. 1982 Jan;114(1):121–127. doi: 10.1111/j.1748-1716.1982.tb06960.x. [DOI] [PubMed] [Google Scholar]
  15. Meininger G. A., Fehr K. L., Yates M. B., Borders J. L., Granger H. J. Hemodynamic characteristics of the intestinal microcirculation in renal hypertension. Hypertension. 1986 Jan;8(1):66–75. doi: 10.1161/01.hyp.8.1.66. [DOI] [PubMed] [Google Scholar]
  16. Mitchell J. H., Blomqvist G. Maximal oxygen uptake. N Engl J Med. 1971 May 6;284(18):1018–1022. doi: 10.1056/NEJM197105062841809. [DOI] [PubMed] [Google Scholar]
  17. Mulvany M. J., Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990 Oct;70(4):921–961. doi: 10.1152/physrev.1990.70.4.921. [DOI] [PubMed] [Google Scholar]
  18. Segal S. S., Damon D. N., Duling B. R. Propagation of vasomotor responses coordinates arteriolar resistances. Am J Physiol. 1989 Mar;256(3 Pt 2):H832–H837. doi: 10.1152/ajpheart.1989.256.3.H832. [DOI] [PubMed] [Google Scholar]
  19. Segal S. S., Duling B. R. Communication between feed arteries and microvessels in hamster striated muscle: segmental vascular responses are functionally coordinated. Circ Res. 1986 Sep;59(3):283–290. doi: 10.1161/01.res.59.3.283. [DOI] [PubMed] [Google Scholar]
  20. Slaaf D. W., Reneman R. S., Wiederhielm C. A. Pressure regulation in muscle of unanesthetized bats. Microvasc Res. 1987 May;33(3):315–326. doi: 10.1016/0026-2862(87)90026-4. [DOI] [PubMed] [Google Scholar]
  21. Wiederhielm C. A., Weston B. V. Microvascular, lymphatic, and tissue pressures in the unanesthetized mammal. Am J Physiol. 1973 Oct;225(4):992–996. doi: 10.1152/ajplegacy.1973.225.4.992. [DOI] [PubMed] [Google Scholar]
  22. Williams D. A., Segal S. S. Feed artery role in blood flow control to rat hindlimb skeletal muscles. J Physiol. 1993 Apr;463:631–646. doi: 10.1113/jphysiol.1993.sp019614. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES