Abstract
The mode of action of the cholinergic antagonist hexamethonium on the excitatory responses of voltage-clampedAplysia neurons to acetylcholine (ACh) has been examined by voltage- and concentration-jump relaxation analysis.
At steady-state concentrations of ACh hyperpolarizing command steps induced inward current relaxations to a new steady-state level (I ss). The time constants of these inward relaxations, τf, which approximate the mean single-channel lifetime, were increased both by increasing the membrane potential and by lowering the bath temperature (Q 10 = 3) but were not affected by increasing the ACh concentration over the dose range employed.
In the presence of hexamethonium hyperpolarizing command steps produced biphasic relaxations of the agonist-induced current. τf was reduced in a voltagedependent manner, the degree of reduction increasing with hyperpolarization.
Slow, inverse relaxations were also triggered in the presence of hexamethonium. The time constant of this relaxation was reduced by increasing membrane potential and hexamethonium concentration.
Both the estimated association (k f = 5 × 104 M −1. sec−1) and the estimated dissociation (k b = 0.24–0.29 sec−1) rate constants derived from a three-state sequential model for block by hexamethonium were independent of the membrane potential. Similar rate constants were estimated from experiments with the concentration-jump technique, which were also independent of the membrane potential over the range - 50 to - 110 mV.
It is suggested that the voltage-dependent actions of hexamethonium may originate either from an alteration of the channel opening and closing rate constants through an allosteric interaction with the ACh receptor, rather than through an influence of the transmembrane electric field on the rate of drug binding, or through a fast reaction which is rate-limited by voltage-independent diffusion.
Key words: hexamethonium, voltage jump, acetylcholine, ion channels
References
- Adams, P. R. (1976a). Drug blockade of open end-plate channels.J. Physiol. (Lond.)260531–552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams, P. R. (1976b). Voltage dependence of agonist responses at voltage-clamped frog endplates.Pflugers Arch.361145–151. [DOI] [PubMed] [Google Scholar]
- Adams, P. R. (1981). Acetylcholine receptor kinetics.J. Membrane Biol.58161–174. [DOI] [PubMed] [Google Scholar]
- Adams, P. R., and Feltz, A. (1977). Interaction of a fluorescent probe with acetylcholine-activated synaptic membrane.Nature269609–611. [DOI] [PubMed] [Google Scholar]
- Adams, P. R., and Feltz, A. (1980a). Quinacrine (mepacrine) action at frog end-plate.J. Physiol. (Lond.)306261–281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams, P. R., and Feltz, A. (1980b). End-plate channel opening and the kinetics of quinacrine (mepacrine) block.J. Physiol. (Lond.)306283–306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albuquerque, E. X., Adler, M., Spivak, C. E., and Aquayo, L. (1980). Mechanism of nicotinic channel activation and blockade.Ann. N.Y. Acad. Sci.358204–238. [DOI] [PubMed] [Google Scholar]
- Anderson, C. R., and Stevens, C. F. (1973). Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction.J. Physiol. (Lond.)235655–691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson, O. A. (1983). Ion movements through gramacidin A channels. Single channel measurements at very high potentials.Biophys. J.41119–134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ascher, P., Marty, A., and Neild, T. O. (1978a). Lifetime and elementary conductance of the channels mediating the excitatory effects of acetylcholine inAplysia neurones.J. Physiol. (Lond.)278177–206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ascher, P., Marty, A., and Neild, T. O. (1978b). The mode of action of antagonists of the excitatory response to acetylcholine inAplysia neurones.J. Physiol. (Lond.)278207–235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ascher, P., Large, W. A., and Rang, H. P. (1979). Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells.J. Physiol. (Lond.)295139–170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Auerbach, A. (1983). Kinetics of nicotinic ion channel blockade.Neurosci. Abstr.91137. [Google Scholar]
- Auerbach, A., and Sachs, F. (1984). Patch clamp studies of single ionic channels.Annu. Rev. Biophys. Bioeng.13269–302. [DOI] [PubMed] [Google Scholar]
- Bregestovski, P. D., and Iljin, V. I. (1980). Effect of calcium antagonist D-600 on the postsynaptic membrane.J. Physiol. (Paris)76515–522. [PubMed] [Google Scholar]
- Bregestovski, P. D., Miledi, R., and Parker, I. (1980). Blocking of frog endplate channels by the organic calcium antagonist D-600.Proc. R. Soc. Lond. B21115–24. [DOI] [PubMed] [Google Scholar]
- Brett, R. S., Dilger, J. P., and Adams, P. R. (1984). Improved “concentration clamp” for use with membrane patches.Neurosci. Abstr.10241. [Google Scholar]
- Clapham, D. E., and Neher, E. (1984). Substance P reduces acetylcholine-induced currents in isolated bovine chromaffin cells.J. Physiol. (Lond.)347255–277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colquhoun, D. (1981). How fast do drugs work? InTowards Understanding Receptors (Lamble, J. W., Ed.), Elsevier/North-Holland, Amsterdam, pp. 16–27. [Google Scholar]
- Colquhoun, D., and Hawkes, A. G. (1977). Relaxation and fluctuations of membrane currents that flow through drug-operated channels.Proc. R. Soc. Lond. B199231–262. [DOI] [PubMed] [Google Scholar]
- Colquhoun, D., and Sheridan, R. E. (1982). The effect of tubocurarine competition on the kinetics of agonist action on the nicotinic receptor.Br. J. Pharmacol.7577–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colquhoun, D., Dreyer, F., and Sheridan, R. E. (1979). The actions of tubocurarine at the frog neuromuscular junction.J. Physiol. (Lond.)293247–284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilger, J. P., and Adams, P. R. (1984). Rapid perfusion of excised patches—activation and desensitization of nicotinic receptor channels.Biophys. J.45:386a. [Google Scholar]
- Dreyer, F., Peper, K., Sterz, R., Bradley, R. J., and Muller, K.-D. (1978). Drug-receptor interaction atthe frog neuromuscular junction. InThe Cholinergic Synapse, Progress in Brain Research, Vol. 49 (Tucek, S., Ed.), Elsevier, Amsterdam, pp. 214–223. [DOI] [PubMed] [Google Scholar]
- Feltz, A., Large, W. A., and Trautmann, A. (1977). Analysis of atropine action at the frog neuromuscular junction.J. Physiol. (Lond.)269109–130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frazier, W. T., Kandel, E. R., Kupferman, I., Waziri, R., and Coggeshall, R. E. (1967). Morphological and functional properties of identified neurons in the abdominal ganglion ofAplysia californica.J. Neurophysiol.301288–1351. [Google Scholar]
- Gurney, A. M., and Rang, H. P. (1984). The channel-blocking action of methonium compounds on rat submandibular ganglion cells.Br. J. Pharmacol.82623–642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heidmann, T., Oswald, R. E., and Changeux, J.-P. (1983). Multiple sites of action for noncompetitive blockers on acetylcholine receptor rich membrane fragments fromTorpedo marmorata.Biochemistry223112–3127. [DOI] [PubMed] [Google Scholar]
- Hille, B. (1977). Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction.J. Gen. Physiol.69497–515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz, B., and Miledi, R. (1972). The statistical nature of the acetylcholine potential and its molecular components.J. Physiol. (Lond.)224665–699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kehoe, J.-S. (1972). Three acetylcholine receptors inAplysia neurones.J. Physiol. (Lond.)225115–146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krishtal, O. A., and Pidoplichko, V. I. (1980). A receptor for protons in the nerve cell membrane.Neuroscience52325–2327. [DOI] [PubMed] [Google Scholar]
- Krouse, M. E., Lester, H. A., Erlanger, B. F., and Wassermann, N. H. (1984). The measurement of the rate constants for a competitive antagonist of the nicotinic acetylcholine receptor.Biophys. J.45:387a. [Google Scholar]
- Lambert, J. J., Durant, N. N., and Henderson, E. G. (1983). Drug-induced modification of ionic conductance at the neuromuscular junction.Annu. Rev. Pharmacol. Toxicol.23505–539. [DOI] [PubMed] [Google Scholar]
- Marty, A. (1978). Noise and relaxation studies of acetylcholine induced currents in the presence of procaine.J. Physiol. (Lond.)278237–250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marty, A., Neild, T. O., and Ascher, P. (1976). Voltage sensitivity of acetylcholine currents inAplysia neurones in the presence of curare.Nature261501–503. [DOI] [PubMed] [Google Scholar]
- Miledi, R., and Parker, I. (1980). Blocking of acetylcholine-induced channels by extracellular or intracellular application of D-600.Proc. R. Soc. Lond. B211143–150. [DOI] [PubMed] [Google Scholar]
- Milne, R. J., and Byrne, J. H. (1981). Effects of hexamethonium and decamethonium on end-plate current parameters.Mol. Pharmacol.19276–281. [PubMed] [Google Scholar]
- Neher, E. (1983). The charge carried by single-channel currents of rat cultured muscle cells in the presence of local anesthetics.J. Physiol. (Lond.)339663–678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher, E., and Steinbach, J. H. (1978). Local anaesthetics transiently block currents through single acetylcholine receptor channels.J. Physiol. (Lond.)277153–176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogden, D. C., Siegelbaum, S. A., and Colquhoun, D. (1981). Block of acetylcholine-activated ion channels by an uncharged local anaesthetic.Nature289596–598. [DOI] [PubMed] [Google Scholar]
- Peper, K., Bradley, R. J., and Dreyer, F. (1982). The acetylcholine receptor at the neuromuscular junction.Physiol. Rev.621271–1340. [DOI] [PubMed] [Google Scholar]
- Possier, P., Baux, G., and Tauc, L. (1983). Possible role of acetylcholinesterase in regulation of postsynaptic receptor efficacy at a central inhibitory synapse ofAplysia.Nature301710–712. [DOI] [PubMed] [Google Scholar]
- Rang, H. P. (1975). Acetylcholine receptors.Q. Rev. Biophys.7283–399. [DOI] [PubMed] [Google Scholar]
- Sakmann, B., and Adams, P. R. (1979). Biophysical aspects of agonist action at frog endplate. InAdvances in Pharmacology and Therapeutics, Vol. 1, Receptors (Jacob, J., Ed.), Pergamon, Oxford, pp. 81–90. [Google Scholar]
- Sattelle, D. B., and David, J. A. (1983). Voltage-dependent block by histrionicotoxin of the acetylcholineinduced current in an insect motoneurone cell body.Neurosci. Lett.4337–41. [DOI] [PubMed] [Google Scholar]
- Sheridan, R. E., and Lester, H. A. (1975). Relaxation measurements on the acetylcholine receptor.Proc. Natl. Acad. Sci. USA723496–3500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheridan, R. E., and Lester, H. A. (1977). Rates and equilibria at the acetylcholine receptor ofElectrophorus electroplaques. A study of neurally evoked postsynaptic currents and of voltage-jump relaxations.J. Gen. Physiol.70187–219. [PMC free article] [PubMed] [Google Scholar]
- Simmons, L. (1983). Preliminary characterization of excitatory acetylcholine receptors inAplysia using the single channel recording technique.Neurosci. Abstr.9457. [Google Scholar]
- Sine, S. M., and Steinbach, J. H. (1984). Agonists block currents through acetylcholine receptor channels.Biophys. J.46277–284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater, N. T., and Carpenter, D. O. (1982). Blockade of acetylcholine-induced inward current inAplysia neurons by strychnine and desipramine: Effect of membrane potential.Cell. Mol. Neurobiol.253–58. [Google Scholar]
- Slater, N. T., and Carpenter, D. O. (1984). A study of the cholinolytic actions of strychnine using the technique of concentration jump relaxation analysis.Cell. Mol. Neurobiol.4263–271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater, N. T., and Carpenter, D. O. (1985). Direct effects of neostigmine on acetylcholine receptor activation and desensitization inAplysia neurones.Pflugers Arch.403 (Suppl.):R50. [Google Scholar]
- Slater, N. T., Haas, H. L., and Carpenter, D. O. (1983). Kinetics of acetylcholine-activated cation channel blockade by the calcium antagonist D-600 inAplysia neurons.Cell. Mol. Neurobiol.3329–344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater, N. T., Carpenter, D. O., Haas, H. L., and David, J. A. (1984a). Blocking kinetics at excitatory acetylcholine responses onAplysia neurons.Biophys. J.4524–25. [Google Scholar]
- Slater, N. T., Hall, A. F., and Carpenter, D. O. (1984b). Kinetic properties of cholinergic desensitization inAplysia neurons.Proc. R. Soc. Lond. B22363–78. [DOI] [PubMed] [Google Scholar]
- Steinbach, J. H. (1980). Activation of nicotinic acetylcholine receptors. InThe Cell Surface and Neuronal Function (Cotman, C. W., Poste, G., and Nicolson, G. I., Eds.), Elsevier/North-Holland, Amsterdam, pp. 119–156. [Google Scholar]
- van Ginnekin, C. A. M. (1977). Kinetics of drug-receptor interaction. InKinetics of Drug Action (van Rossum, J. M., Eds.), Springer-Verlag, Berlin, pp. 357–411. [Google Scholar]
- Wachtel, R. E., and Wilson, W. A. (1983). Barbiturate effects on acetylcholine-activated channels inAplysia neurons.Mol. Pharmacol.24449–457. [PubMed] [Google Scholar]
- Woodhull, A. M. (1973). Ionic blockage of sodium channels in nerve.J. Gen. Physiol.61687–708. [DOI] [PMC free article] [PubMed] [Google Scholar]
