Abstract
1. Short term potentiation (STP) of breathing refers to respiratory activity at a higher level than expected just from the dynamics of the peripheral and central chemoreceptors. In humans STP is activated by hypoxic stimulation. 2. To investigate the effects of the duration of hypoxia and the posthypoxic inspired O2 concentration on STP, the ventilatory responses to 30 s and 1, 3 and 5 min of hypoxia (end-tidal PO2, P(ET.O2) approximately 6.5 kPa) followed by normoxia (P(ET.O2) approximately 14.5 kPa) and hyperoxia (P(ET.O2) approximately 70 kPa) were studied in ten healthy subjects. End-tidal PCO2 (P(ET.CO2)) was clamped during hypoxic and recovery periods at 5.7 kPa. 3. Steady-state ventilation (VE) was 13.7 +/- 0.6 l min-1 during normoxia and increased to 15.5 +/- 0.3 l min-1 during hyperoxia (P < 0.05) due to the reduced Haldane effect and some decrease in cerebral blood flow (CBF). 4. The mean responses following hypoxia reached normoxic baseline after 69, 54, 12 and 12 s when 30 s and 1, 3 and 5 min of hypoxia, respectively, were followed by normoxia. An undershoot of 10 and 20% below hyperoxic baseline was observed when 3 and 5 min of hypoxia, respectively, were followed by hyperoxia. Hyperoxic VE reached hyperoxic baseline after 9, 15, 12 and 9 s at the termination of 30 s and 1, 3 and 5 min of hypoxia, respectively. 5. Normoxic recovery from 30 s and 1 min of hypoxia displayed a fast and subsequent slow decrease towards normoxic baseline. The fast component was attributed to the loss of the hypoxic drive at the site of the peripheral chemoreceptors, and the slow component to the decay of the STP that had been activated centrally by the stimulus. A slow decrease at the termination of 30 s and 1 min of hypoxia by hyperoxia was not observed since this component was cancelled by the increase in ventilatory output due to the reduced Haldane effect and some decrease of CBF. 6. Decay of the STP was not apparent in the normoxic recovery from 3 and 5 min of hypoxia as a slow component since it cancelled against the slow ventilatory increase related to the increase of brain tissue PCO2 due to the reduction of CBF at the relief of hypoxia. The undershoot observed when hyperoxia followed 3 and 5 min of hypoxia reflects the stimulatory effects of hyperoxia on VE. 7. The manifestation of the STP as a slow ventilatory decrease depends on the duration of hypoxia and the subsequent inspired oxygen concentration. We argue that STP is not abolished by the central depressive effects of hypoxia, although the manifestation of the STP may be overridden or counteracted by other mechanisms.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed M., Giesbrecht G. G., Serrette C., Georgopoulos D., Anthonisen N. R. Respiratory short-term potentiation (after-discharge) in elderly humans. Respir Physiol. 1993 Aug;93(2):165–173. doi: 10.1016/0034-5687(93)90003-s. [DOI] [PubMed] [Google Scholar]
- Badr M. S., Skatrud J. B., Dempsey J. A. Determinants of poststimulus potentiation in humans during NREM sleep. J Appl Physiol (1985) 1992 Nov;73(5):1958–1971. doi: 10.1152/jappl.1992.73.5.1958. [DOI] [PubMed] [Google Scholar]
- Berkenbosch A., Dahan A., DeGoede J., Olievier I. C. The ventilatory response to CO2 of the peripheral and central chemoreflex loop before and after sustained hypoxia in man. J Physiol. 1992 Oct;456:71–83. doi: 10.1113/jphysiol.1992.sp019327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berkenbosch A., DeGoede J., Ward D. S., Olievier C. N., VanHartevelt J. Dynamic response of the peripheral chemoreflex loop to changes in end-tidal O2. J Appl Physiol (1985) 1991 Sep;71(3):1123–1128. doi: 10.1152/jappl.1991.71.3.1123. [DOI] [PubMed] [Google Scholar]
- Black A. M., McCloskey D. I., Torrance R. W. The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Respir Physiol. 1971 Oct;13(1):36–49. doi: 10.1016/0034-5687(71)90063-6. [DOI] [PubMed] [Google Scholar]
- Clement I. D., Robbins P. A. Latency of the ventilatory chemoreflex response to hypoxia in humans. Respir Physiol. 1993 Jun;92(3):277–287. doi: 10.1016/0034-5687(93)90013-z. [DOI] [PubMed] [Google Scholar]
- Dahan A., DeGoede J., Berkenbosch A., Olievier I. C. The influence of oxygen on the ventilatory response to carbon dioxide in man. J Physiol. 1990 Sep;428:485–499. doi: 10.1113/jphysiol.1990.sp018223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahan A., van den Elsen M. J., Berkenbosch A., DeGoede J., Olievier I. C., Burm A. G., van Kleef J. W. Influence of a subanesthetic concentration of halothane on the ventilatory response to step changes into and out of sustained isocapnic hypoxia in healthy volunteers. Anesthesiology. 1994 Oct;81(4):850–859. doi: 10.1097/00000542-199410000-00012. [DOI] [PubMed] [Google Scholar]
- Dahan A., van den Elsen M. J., Berkenbosch A., DeGoede J., Olievier I. C., van Kleef J. W., Bovill J. G. Effects of subanesthetic halothane on the ventilatory responses to hypercapnia and acute hypoxia in healthy volunteers. Anesthesiology. 1994 Apr;80(4):727–738. doi: 10.1097/00000542-199404000-00004. [DOI] [PubMed] [Google Scholar]
- Dahan A., van den Elsen M. J., Berkenbosch A., DeGoede J., Olievier I. C., van Kleef J. W. Halothane affects ventilatory afterdischarge in humans. Br J Anaesth. 1995 May;74(5):544–548. doi: 10.1093/bja/74.5.544. [DOI] [PubMed] [Google Scholar]
- Easton P. A., Slykerman L. J., Anthonisen N. R. Recovery of the ventilatory response to hypoxia in normal adults. J Appl Physiol (1985) 1988 Feb;64(2):521–528. doi: 10.1152/jappl.1988.64.2.521. [DOI] [PubMed] [Google Scholar]
- Eldridge F. L., Gill-Kumar P. Central neural respiratory drive and afterdischarge. Respir Physiol. 1980 Apr;40(1):49–63. doi: 10.1016/0034-5687(80)90004-3. [DOI] [PubMed] [Google Scholar]
- Eldridge F. L., Kiley J. P., Paydarfar D. Dynamics of medullary hydrogen ion and respiratory responses to square-wave change of arterial carbon dioxide in cats. J Physiol. 1987 Apr;385:627–642. doi: 10.1113/jphysiol.1987.sp016511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eldridge F. L. Subthreshold central neural respiratory activity and afterdischarge. Respir Physiol. 1980 Mar;39(3):327–343. doi: 10.1016/0034-5687(80)90064-x. [DOI] [PubMed] [Google Scholar]
- Engwall M. J., Smith C. A., Dempsey J. A., Bisgard G. E. Ventilatory afterdischarge and central respiratory drive interactions in the awake goat. J Appl Physiol (1985) 1994 Jan;76(1):416–423. doi: 10.1152/jappl.1994.76.1.416. [DOI] [PubMed] [Google Scholar]
- Folgering H., Durlinger M. Time course of posthyperventilation breathing in humans depends on alveolar CO2 tension. J Appl Physiol Respir Environ Exerc Physiol. 1983 Mar;54(3):809–813. doi: 10.1152/jappl.1983.54.3.809. [DOI] [PubMed] [Google Scholar]
- Fregosi R. F. Short-term potentiation of breathing in humans. J Appl Physiol (1985) 1991 Sep;71(3):892–899. doi: 10.1152/jappl.1991.71.3.892. [DOI] [PubMed] [Google Scholar]
- Georgopoulos D., Bshouty Z., Younes M., Anthonisen N. R. Hypoxic exposure and activation of the afterdischarge mechanism in conscious humans. J Appl Physiol (1985) 1990 Sep;69(3):1159–1164. doi: 10.1152/jappl.1990.69.3.1159. [DOI] [PubMed] [Google Scholar]
- Gleeson K., Sweer L. W. Ventilatory pattern after hypoxic stimulation during wakefulness and NREM sleep. J Appl Physiol (1985) 1993 Jul;75(1):397–404. doi: 10.1152/jappl.1993.75.1.397. [DOI] [PubMed] [Google Scholar]
- Kety S. S., Schmidt C. F. THE EFFECTS OF ALTERED ARTERIAL TENSIONS OF CARBON DIOXIDE AND OXYGEN ON CEREBRAL BLOOD FLOW AND CEREBRAL OXYGEN CONSUMPTION OF NORMAL YOUNG MEN. J Clin Invest. 1948 Jul;27(4):484–492. doi: 10.1172/JCI101995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirby T. P., Wraith P. K., De Cort S. C., Airlie M. A., Hill J. E., Carson E. R., Flenley D. C., Warren P. M. Modelling the dynamic ventilatory response to hypoxia in normal subjects. J Theor Biol. 1994 Jan 21;166(2):135–147. doi: 10.1006/jtbi.1994.1012. [DOI] [PubMed] [Google Scholar]
- Meah M. S., Gardner W. N. Post-hyperventilation apnoea in conscious humans. J Physiol. 1994 Jun 15;477(Pt 3):527–538. doi: 10.1113/jphysiol.1994.sp020213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishimura M., Suzuki A., Nishiura Y., Yamamoto H., Miyamoto K., Kishi F., Kawakami Y. Effect of brain blood flow on hypoxic ventilatory response in humans. J Appl Physiol (1985) 1987 Sep;63(3):1100–1106. doi: 10.1152/jappl.1987.63.3.1100. [DOI] [PubMed] [Google Scholar]
- Painter R., Khamnei S., Robbins P. A mathematical model of the human ventilatory response to isocapnic hypoxia. J Appl Physiol (1985) 1993 Apr;74(4):2007–2015. doi: 10.1152/jappl.1993.74.4.2007. [DOI] [PubMed] [Google Scholar]
- Ponte J., Purves M. J. Frequency response of carotid body chemoreceptors in the cat to changes of PaCO2, PaO2, and pHa. J Appl Physiol. 1974 Nov;37(5):635–647. doi: 10.1152/jappl.1974.37.5.635. [DOI] [PubMed] [Google Scholar]
- Suzuki A., Nishimura M., Yamamoto H., Miyamoto K., Kishi F., Kawakami Y. No effect of brain blood flow on ventilatory depression during sustained hypoxia. J Appl Physiol (1985) 1989 Apr;66(4):1674–1678. doi: 10.1152/jappl.1989.66.4.1674. [DOI] [PubMed] [Google Scholar]
- Swanson G. D., Ward D. S., Bellville J. W. Posthyperventilation isocapnic hyperpnea. J Appl Physiol. 1976 Apr;40(4):592–596. doi: 10.1152/jappl.1976.40.4.592. [DOI] [PubMed] [Google Scholar]
- Tawadrous F. D., Eldridge F. L. Posthyperventilation breathing patterns after active hyperventilation in man. J Appl Physiol. 1974 Sep;37(3):353–356. doi: 10.1152/jappl.1974.37.3.353. [DOI] [PubMed] [Google Scholar]
- Teppema L. J., Vis A., Evers J. A., Folgering H. T. Dynamics of brain extracellular fluid pH and phrenic nerve activity in cats after end-tidal CO2 forcing. Respir Physiol. 1982 Dec;50(3):359–380. doi: 10.1016/0034-5687(82)90029-9. [DOI] [PubMed] [Google Scholar]
- Vis A., Folgering H. T. Phrenic nerve afterdischarge after electrical stimulation of the carotid sinus nerve in cats. Respir Physiol. 1981 Aug;45(2):217–227. doi: 10.1016/0034-5687(81)90061-x. [DOI] [PubMed] [Google Scholar]
- Vizek M., Pickett C. K., Weil J. V. Biphasic ventilatory response of adult cats to sustained hypoxia has central origin. J Appl Physiol (1985) 1987 Oct;63(4):1658–1664. doi: 10.1152/jappl.1987.63.4.1658. [DOI] [PubMed] [Google Scholar]
- Wagner P. G., Eldridge F. L. Development of short-term potentiation of respiration. Respir Physiol. 1991 Jan;83(1):129–139. doi: 10.1016/0034-5687(91)90098-4. [DOI] [PubMed] [Google Scholar]