Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Dec 1;489(Pt 2):299–307. doi: 10.1113/jphysiol.1995.sp021051

Voltage-activated proton currents in membrane patches of rat alveolar epithelial cells.

T E DeCoursey 1, V V Cherny 1
PMCID: PMC1156758  PMID: 8847626

Abstract

1. Voltage-activated H(+)-selective currents were studied in cell-attached and excised, inside-out patches of membrane from rat alveolar epithelial cells in primary culture. The pH was varied from 5.5 to 7.5 in the pipette (pHo) and in the bath (pHi). 2. H+ currents in cell-attached patches exhibited activation kinetics and voltage dependence intermediate between their behaviour after excision into pH 6.5 and pH 7.5 solutions, consistent with reported pHi values for alveolar epithelial cells. 3. In inside-out patches, increasing pHo shifted the threshold voltage for activating H+ currents and the relationship between the time constant of activation of H+ currents (tau act) and voltage (V) negatively along the voltage axis by 40-50 mV (unit pH)-1. 4. Decreasing pHi shifted the activation threshold and the tau act-V relationship negatively along the voltage axis by 40-50 mV (unit pH)-1. In addition, at lower pHi the activation of H+ currents upon patch depolarization was markedly faster, with tau act increasing approximately 4- to 5-fold per unit pHi. 5. The limiting slope H+ conductance increased only by a factor of 1.7 per unit pH when pHi was lowered in the range 7.5-5.5 (at constant pHo 7.5). This result suggests that H+ permeation through voltage-activated H+ 'channels' occurs by a mechanism distinct from H+ permeation through water-filled ion channels, in which the conductance might be expected to increase in direct proportion to [H+].

Full text

PDF
299

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson P. S., Nee J., Suhm M. A. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature. 1982 Sep 9;299(5879):161–163. doi: 10.1038/299161a0. [DOI] [PubMed] [Google Scholar]
  2. Barish M. E., Baud C. A voltage-gated hydrogen ion current in the oocyte membrane of the axolotl, Ambystoma. J Physiol. 1984 Jul;352:243–263. doi: 10.1113/jphysiol.1984.sp015289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barry P. H., Lynch J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol. 1991 Apr;121(2):101–117. doi: 10.1007/BF01870526. [DOI] [PubMed] [Google Scholar]
  4. Bernheim L., Krause R. M., Baroffio A., Hamann M., Kaelin A., Bader C. R. A voltage-dependent proton current in cultured human skeletal muscle myotubes. J Physiol. 1993 Oct;470:313–333. doi: 10.1113/jphysiol.1993.sp019860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byerly L., Meech R., Moody W., Jr Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis. J Physiol. 1984 Jun;351:199–216. doi: 10.1113/jphysiol.1984.sp015241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Byerly L., Suen Y. Characterization of proton currents in neurones of the snail, Lymnaea stagnalis. J Physiol. 1989 Jun;413:75–89. doi: 10.1113/jphysiol.1989.sp017642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cherny V. V., Markin V. S., DeCoursey T. E. The voltage-activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient. J Gen Physiol. 1995 Jun;105(6):861–896. doi: 10.1085/jgp.105.6.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeCoursey T. E., Cherny V. V. Na(+)-H+ antiport detected through hydrogen ion currents in rat alveolar epithelial cells and human neutrophils. J Gen Physiol. 1994 May;103(5):755–785. doi: 10.1085/jgp.103.5.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeCoursey T. E., Cherny V. V. Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys J. 1993 Oct;65(4):1590–1598. doi: 10.1016/S0006-3495(93)81198-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DeCoursey T. E., Cherny V. V. Voltage-activated hydrogen ion currents. J Membr Biol. 1994 Sep;141(3):203–223. doi: 10.1007/BF00235130. [DOI] [PubMed] [Google Scholar]
  11. DeCoursey T. E. Hydrogen ion currents in rat alveolar epithelial cells. Biophys J. 1991 Nov;60(5):1243–1253. doi: 10.1016/S0006-3495(91)82158-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DeCoursey T. E., Jacobs E. R., Silver M. R. Potassium currents in rat type II alveolar epithelial cells. J Physiol. 1988 Jan;395:487–505. doi: 10.1113/jphysiol.1988.sp016931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DeCoursey T. E. State-dependent inactivation of K+ currents in rat type II alveolar epithelial cells. J Gen Physiol. 1990 Apr;95(4):617–646. doi: 10.1085/jgp.95.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Decker E. R., Levitt D. G. Use of weak acids to determine the bulk diffusion limitation of H+ ion conductance through the gramicidin channel. Biophys J. 1988 Jan;53(1):25–32. doi: 10.1016/S0006-3495(88)83062-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Demaurex N., Grinstein S., Jaconi M., Schlegel W., Lew D. P., Krause K. H. Proton currents in human granulocytes: regulation by membrane potential and intracellular pH. J Physiol. 1993 Jul;466:329–344. [PMC free article] [PubMed] [Google Scholar]
  16. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  17. Junge W. Protons, the thylakoid membrane, and the chloroplast ATP synthase. Ann N Y Acad Sci. 1989;574:268–286. doi: 10.1111/j.1749-6632.1989.tb25164.x. [DOI] [PubMed] [Google Scholar]
  18. Kapus A., Romanek R., Qu A. Y., Rotstein O. D., Grinstein S. A pH-sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages. J Gen Physiol. 1993 Oct;102(4):729–760. doi: 10.1085/jgp.102.4.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meech R. W., Thomas R. C. Voltage-dependent intracellular pH in Helix aspersa neurones. J Physiol. 1987 Sep;390:433–452. doi: 10.1113/jphysiol.1987.sp016710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nagle J. F., Tristram-Nagle S. Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J Membr Biol. 1983;74(1):1–14. doi: 10.1007/BF01870590. [DOI] [PubMed] [Google Scholar]
  21. Thomas R. C., Meech R. W. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature. 1982 Oct 28;299(5886):826–828. doi: 10.1038/299826a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES