Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Dec 1;489(Pt 2):489–510. doi: 10.1113/jphysiol.1995.sp021067

Experimentally derived model for the locomotor pattern generator in the Xenopus embryo.

N Dale 1
PMCID: PMC1156774  PMID: 8847642

Abstract

1. Simulations of Xenopus embryo spinal neurons were endowed with Hodgkin-Huxley-style models of voltage-dependent Na+, Ca2+, slow K+ and fast K+ currents together with a Na(+)-dependent K+ current. The parameters describing the activation, inactivation and relaxation of these currents were derived from previous voltage-clamp studies of Xenopus embryo spinal neurons. Each of the currents was present at realistic densities. 2. The model neurons fired repetitively in response to current injection. The Ca2+ current was essential for repetitive firing in response to current injection. The fast K+ current appeared mainly to control spike width, whereas the slow K+ current exerted a powerful influence on the reptitive firing properties of the neurons without markedly affecting spike width. 3. The properties of the model neurons could be made more consistent with those previously reported for Xenopus embryo neurons during intracellular recordings in vivo, if the shunting effect of the sharp microelectrode was incorporated into the model. 4. The model neurons were then used to create a simplified version of the spinal network that controls swimming in the frog embryo. This model network could generate the motor pattern for swimming: the activity between the left and right sides alternated with a cycle period that varied from 50 to 120 ms. This is very similar to the range of cycle periods observed in the real embryo. The shunting effect of the microelectrode was once again taken into account. 5. Reductions of the K+ currents perturbed the motor pattern and gave three forms of aberrant motor activity very similar to those previously seen during the application of K+ channel blockers to the real embryo. The ability to generate the correct motor pattern for swimming in the model depended on the balance between the K+ currents and the inward Na+ and Ca2+ currents rather than their absolute values. 6. The model network could generate a motor pattern for swimming over a very wide range of excitatory (2-10 nS) and inhibitory (2-400 nS) synaptic strengths. Rough estimates of the physiological synaptic strengths in the real circuit (around 20-60 nS for inhibition and 2-5 nS for excitation) fall within the range of synaptic strengths that gave simulation of the swimming motor pattern in the model. 7. The cycle period of the motor activity in the model shortened either as the excitatory synapses were strengthened or as the inhibitory synapses were weakened. 8. The prediction that the strength of the mid-cycle inhibition determines cycle period has been tested by using low levels of strychnine to reduce glycinergic reciprocal inhibition in a graded manner in the real embryo. As the inhibition was reduced, the cycle period of fictive swimming in the embryo shortened by amounts very close to those predicted by the model. 9. This new experimentally derived model can replicate many of the known features of fictive swimming in the real embryo and may be of value as an analytical tool in attempting to understand how the spinal circuitry of the Xenopus embryo and related amphibian embryos control a variety of motor behaviours.

Full text

PDF
489

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arshavsky YuI, Orlovsky G. N., Panchin YuV, Roberts A., Soffe S. R. Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus. Trends Neurosci. 1993 Jun;16(6):227–233. doi: 10.1016/0166-2236(93)90161-e. [DOI] [PubMed] [Google Scholar]
  2. Clarke J. D., Roberts A. Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming. J Physiol. 1984 Sep;354:345–362. doi: 10.1113/jphysiol.1984.sp015380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dale N. A large, sustained Na(+)- and voltage-dependent K+ current in spinal neurons of the frog embryo. J Physiol. 1993 Mar;462:349–372. doi: 10.1113/jphysiol.1993.sp019559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dale N. Kinetic characterization of the voltage-gated currents possessed by Xenopus embryo spinal neurons. J Physiol. 1995 Dec 1;489(Pt 2):473–488. doi: 10.1113/jphysiol.1995.sp021066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dale N. Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord. J Physiol. 1985 Jun;363:61–70. doi: 10.1113/jphysiol.1985.sp015695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dale N., Roberts A. Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos. J Physiol. 1985 Jun;363:35–59. doi: 10.1113/jphysiol.1985.sp015694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dale N., Roberts A. Excitatory amino acid receptors in Xenopus embryo spinal cord and their role in the activation of swimming. J Physiol. 1984 Mar;348:527–543. doi: 10.1113/jphysiol.1984.sp015123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dale Nicholas. The Isolation and Identification of Spinal Neurons That Control Movement in the Xenopus Embryo. Eur J Neurosci. 1991;3(10):1025–1035. doi: 10.1111/j.1460-9568.1991.tb00039.x. [DOI] [PubMed] [Google Scholar]
  9. Forsythe I. D., Westbrook G. L. Slow excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors on cultured mouse central neurones. J Physiol. 1988 Feb;396:515–533. doi: 10.1113/jphysiol.1988.sp016975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gu X., Spitzer N. C. Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons. J Neurosci. 1993 Nov;13(11):4936–4948. doi: 10.1523/JNEUROSCI.13-11-04936.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hellgren J., Grillner S., Lansner A. Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biol Cybern. 1992;68(1):1–13. doi: 10.1007/BF00203132. [DOI] [PubMed] [Google Scholar]
  12. Hill R., Matsushima T., Schotland J., Grillner S. Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts. Neuroreport. 1992 Oct;3(10):943–945. doi: 10.1097/00001756-199210000-00032. [DOI] [PubMed] [Google Scholar]
  13. Kahn J. A., Roberts A. The central nervous origin of the swimming motor pattern in embryos of Xenopus laevis. J Exp Biol. 1982 Aug;99:185–196. doi: 10.1242/jeb.99.1.185. [DOI] [PubMed] [Google Scholar]
  14. Korn H., Triller A., Mallet A., Faber D. S. Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons. Science. 1981 Aug 21;213(4510):898–901. doi: 10.1126/science.6266015. [DOI] [PubMed] [Google Scholar]
  15. Linsdell P., Moody W. J. Na+ channel mis-expression accelerates K+ channel development in embryonic Xenopus laevis skeletal muscle. J Physiol. 1994 Nov 1;480(Pt 3):405–410. doi: 10.1113/jphysiol.1994.sp020370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McCormick D. A., Huguenard J. R. A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol. 1992 Oct;68(4):1384–1400. doi: 10.1152/jn.1992.68.4.1384. [DOI] [PubMed] [Google Scholar]
  17. O'Dowd D. K., Ribera A. B., Spitzer N. C. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons. J Neurosci. 1988 Mar;8(3):792–805. doi: 10.1523/JNEUROSCI.08-03-00792.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oyama Y., Akaike N., Carpenter D. O. Strychnine decreases the voltage-dependent Ca2+ current of both Aplysia and frog ganglion neurons. Cell Mol Neurobiol. 1988 Sep;8(3):307–314. doi: 10.1007/BF00711172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Perrins R., Roberts A. Cholinergic and electrical synapses between synergistic spinal motoneurones in the Xenopus laevis embryo. J Physiol. 1995 May 15;485(Pt 1):135–144. doi: 10.1113/jphysiol.1995.sp020718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perrins R., Roberts A. Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos. J Neurophysiol. 1995 Mar;73(3):1013–1019. doi: 10.1152/jn.1995.73.3.1013. [DOI] [PubMed] [Google Scholar]
  21. Redman S., Walmsley B. Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. J Physiol. 1983 Oct;343:135–145. doi: 10.1113/jphysiol.1983.sp014885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ribera A. B., Spitzer N. C. Differentiation of IKA in amphibian spinal neurons. J Neurosci. 1990 Jun;10(6):1886–1891. doi: 10.1523/JNEUROSCI.10-06-01886.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roberts A., Clarke J. D. The neuroanatomy of an amphibian embryo spinal cord. Philos Trans R Soc Lond B Biol Sci. 1982 Jan 27;296(1081):195–212. doi: 10.1098/rstb.1982.0002. [DOI] [PubMed] [Google Scholar]
  24. Roberts A., Dale N., Ottersen O. P., Storm-Mathisen J. Development and characterization of commissural interneurones in the spinal cord of Xenopus laevis embryos revealed by antibodies to glycine. Development. 1988 Jul;103(3):447–461. doi: 10.1242/dev.103.3.447. [DOI] [PubMed] [Google Scholar]
  25. Roberts A., Khan J. A. Intracellular recordings from spinal neurons during 'swimming' in paralysed amphibian embryos. Philos Trans R Soc Lond B Biol Sci. 1982 Jan 27;296(1081):213–228. doi: 10.1098/rstb.1982.0003. [DOI] [PubMed] [Google Scholar]
  26. Roberts A., Tunstall M. J. Mutual Re-excitation with Post-Inhibitory Rebound: A Simulation Study on the Mechanisms for Locomotor Rhythm Generation in the Spinal Cord of Xenopus Embryos. Eur J Neurosci. 1990;2(1):11–23. doi: 10.1111/j.1460-9568.1990.tb00377.x. [DOI] [PubMed] [Google Scholar]
  27. Roberts A., Tunstall M. J., Wolf E. Properties of networks controlling locomotion and significance of voltage dependency of NMDA channels: stimulation study of rhythm generation sustained by positive feedback. J Neurophysiol. 1995 Feb;73(2):485–495. doi: 10.1152/jn.1995.73.2.485. [DOI] [PubMed] [Google Scholar]
  28. Roberts Alan, Sillar Keith T. Characterization and Function of Spinal Excitatory Interneurons with Commissural Projections in Xenopus laevis embryos. Eur J Neurosci. 1990;2(12):1051–1062. doi: 10.1111/j.1460-9568.1990.tb00017.x. [DOI] [PubMed] [Google Scholar]
  29. Shapiro B. I., Wang C. M., Narahashi T. Effects of strychnine on ionic conductances of squid axon membrane. J Pharmacol Exp Ther. 1974 Jan;188(1):66–76. [PubMed] [Google Scholar]
  30. Sillar K. T., Roberts A. Control of frequency during swimming in Xenopus embryos: a study on interneuronal recruitment in a spinal rhythm generator. J Physiol. 1993 Dec;472:557–572. doi: 10.1113/jphysiol.1993.sp019962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sillar K. T., Roberts A. The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos. J Neurosci. 1992 May;12(5):1647–1657. doi: 10.1523/JNEUROSCI.12-05-01647.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sillar K. T., Simmers A. J., Wedderburn J. F. The post-embryonic development of cell properties and synaptic drive underlying locomotor rhythm generation in Xenopus larvae. Proc Biol Sci. 1992 Jul 22;249(1324):65–70. doi: 10.1098/rspb.1992.0084. [DOI] [PubMed] [Google Scholar]
  33. Soffe S. R. Active and Passive Membrane Properties of Spinal Cord Neurons that Are Rhythmically Active during Swimming in Xenopus Embryos. Eur J Neurosci. 1990 Jan;2(1):1–10. doi: 10.1111/j.1460-9568.1990.tb00376.x. [DOI] [PubMed] [Google Scholar]
  34. Soffe S. R., Clarke J. D., Roberts A. Activity of commissural interneurons in spinal cord of Xenopus embryos. J Neurophysiol. 1984 Jun;51(6):1257–1267. doi: 10.1152/jn.1984.51.6.1257. [DOI] [PubMed] [Google Scholar]
  35. Soffe S. R. Ionic and pharmacological properties of reciprocal inhibition in Xenopus embryo motoneurones. J Physiol. 1987 Jan;382:463–473. doi: 10.1113/jphysiol.1987.sp016378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Soffe S. R., Roberts A. Tonic and phasic synaptic input to spinal cord motoneurons during fictive locomotion in frog embryos. J Neurophysiol. 1982 Dec;48(6):1279–1288. doi: 10.1152/jn.1982.48.6.1279. [DOI] [PubMed] [Google Scholar]
  37. Soffe S. R., Roberts Alan. The Influence of Magnesium Ions on the NMDA Mediated Responses of Ventral Rhythmic Neurons in the Spinal Cord of Xenopus Embryos. Eur J Neurosci. 1989 Sep;1(5):507–515. doi: 10.1111/j.1460-9568.1989.tb00357.x. [DOI] [PubMed] [Google Scholar]
  38. Soffe S. R. Roles of Glycinergic Inhibition and N-Methyl-D-Aspartate Receptor Mediated Excitation in the Locomotor Rhythmicity of One Half of the Xenopus Embryo Central Nervous System. Eur J Neurosci. 1989 Jan;1(6):561–571. doi: 10.1111/j.1460-9568.1989.tb00363.x. [DOI] [PubMed] [Google Scholar]
  39. Soffe S. R., Sillar K. T. Patterns of synaptic drive to ventrally located spinal neurones in Rana temporaria embryos during rhythmic and non-rhythmic motor responses. J Exp Biol. 1991 Mar;156:101–118. doi: 10.1242/jeb.156.1.101. [DOI] [PubMed] [Google Scholar]
  40. Soffe S. R. Triggering and gating of motor responses by sensory stimulation: behavioural selection in Xenopus embryos. Proc Biol Sci. 1991 Dec 23;246(1317):197–203. doi: 10.1098/rspb.1991.0145. [DOI] [PubMed] [Google Scholar]
  41. Soffe S. R. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord. J Neurosci. 1993 Oct;13(10):4456–4469. doi: 10.1523/JNEUROSCI.13-10-04456.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tierney A. J., Harris-Warrick R. M. Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. J Neurophysiol. 1992 Mar;67(3):599–609. doi: 10.1152/jn.1992.67.3.599. [DOI] [PubMed] [Google Scholar]
  43. Traub R. D., Wong R. K., Miles R., Michelson H. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol. 1991 Aug;66(2):635–650. doi: 10.1152/jn.1991.66.2.635. [DOI] [PubMed] [Google Scholar]
  44. Tråvén H. G., Brodin L., Lansner A., Ekeberg O., Wallén P., Grillner S. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks. J Neurophysiol. 1993 Aug;70(2):695–709. doi: 10.1152/jn.1993.70.2.695. [DOI] [PubMed] [Google Scholar]
  45. Tunstall M. J., Roberts A. A longitudinal gradient of synaptic drive in the spinal cord of Xenopus embryos and its role in co-ordination of swimming. J Physiol. 1994 Feb 1;474(3):393–405. doi: 10.1113/jphysiol.1994.sp020031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wall M. J., Dale N. A role for potassium currents in the generation of the swimming motor pattern of Xenopus embryos. J Neurophysiol. 1994 Jul;72(1):337–348. doi: 10.1152/jn.1994.72.1.337. [DOI] [PubMed] [Google Scholar]
  47. Wall M. J., Dale N. A slowly activating Ca(2+)-dependent K+ current that plays a role in termination of swimming in Xenopus embryos. J Physiol. 1995 Sep 15;487(Pt 3):557–572. doi: 10.1113/jphysiol.1995.sp020900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wall M. J., Dale N. GABAB receptors modulate an omega-conotoxin-sensitive calcium current that is required for synaptic transmission in the Xenopus embryo spinal cord. J Neurosci. 1994 Oct;14(10):6248–6255. doi: 10.1523/JNEUROSCI.14-10-06248.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wall M. J., Dale N. GABAB receptors modulate glycinergic inhibition and spike threshold in Xenopus embryo spinal neurones. J Physiol. 1993 Sep;469:275–290. doi: 10.1113/jphysiol.1993.sp019814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wolf E., Roberts A. The influence of premotor interneuron populations on the frequency of the spinal pattern generator for swimming in Xenopus embryos: a simulation study. Eur J Neurosci. 1995 Apr 1;7(4):671–678. doi: 10.1111/j.1460-9568.1995.tb00671.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES