Abstract
1. Effects of exogenous adenosine 5'-triphosphate (ATP) and acetylcholine (ACh) were investigated on acutely dissociated preganglionic neurones in the dorsal motor nucleus of vagus (DMV) of rats using whole-cell patch clamp recording methods. 2. The DMV neurones identified by retrograde transport of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) fixed onto the cervical vagal nerve bundle were large in size (25-35 microns diameter) and bipolar or tripolar in shape. 3. About 90% of DiI labelled DMV neurones responded to both ATP (10(-4) M) and ACh (10(-4) M) with inward currents at a holding potential (Vh) of -40 mV. 4. The ATP-induced current (IATP) and the ACh-induced current (IACh) reversed their polarities at membrane potentials between +5 and +15 mV, indicating that ATP and ACh increase the membrane permeability to cations. 5. The inhibitory potency of Reactive Blue on 5 x 10(-4) M IATP is more effective (concentration for half-inhibition (IC50), 4.4 x 10(-7) M) than suramin (IC50, 6.0 x 10(-6) M). In addition, alpha,beta-methylene ATP up to 10(-4) M could not induce any current. As intracellular application of guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) did not block the IATP, the IATP was mediated not by guanosine triphosphate (GTP) binding protein, but rather by ligand-gated ionic channels, presumably via P2X receptors. 6. Currents produced by ACh were due to activation of nicotinic receptors because they were mimicked by nicotine and carbachol, and blocked by hexamethonium. In addition, muscarine evoked no response. 7. Only 25% of nucleus tractus solitarii (NTS) neurones and no hypoglossal neurones responded to the exogenous application of ATP. 8. These results suggest that vagal preganglionic neurones colocalize functionally nicotinic and P2X purinergic receptors.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbracchio M. P., Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64(3):445–475. doi: 10.1016/0163-7258(94)00048-4. [DOI] [PubMed] [Google Scholar]
- Bean B. P. ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J Neurosci. 1990 Jan;10(1):1–10. doi: 10.1523/JNEUROSCI.10-01-00001.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer J. L., Cooper C. L., Harden T. K. [32P]3'-O-(4-benzoyl)benzoyl ATP as a photoaffinity label for a phospholipase C-coupled P2Y-purinergic receptor. J Biol Chem. 1990 Aug 15;265(23):13515–13520. [PubMed] [Google Scholar]
- Brake A. J., Wagenbach M. J., Julius D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature. 1994 Oct 6;371(6497):519–523. doi: 10.1038/371519a0. [DOI] [PubMed] [Google Scholar]
- Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
- Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sep;24(3):509–581. [PubMed] [Google Scholar]
- Charest R., Blackmore P. F., Exton J. H. Characterization of responses of isolated rat hepatocytes to ATP and ADP. J Biol Chem. 1985 Dec 15;260(29):15789–15794. [PubMed] [Google Scholar]
- Edwards F. A., Gibb A. J., Colquhoun D. ATP receptor-mediated synaptic currents in the central nervous system. Nature. 1992 Sep 10;359(6391):144–147. doi: 10.1038/359144a0. [DOI] [PubMed] [Google Scholar]
- Evans R. J., Derkach V., Surprenant A. ATP mediates fast synaptic transmission in mammalian neurons. Nature. 1992 Jun 11;357(6378):503–505. doi: 10.1038/357503a0. [DOI] [PubMed] [Google Scholar]
- Fieber L. A., Adams D. J. Adenosine triphosphate-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia. J Physiol. 1991 Mar;434:239–256. doi: 10.1113/jphysiol.1991.sp018467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furukawa K., Akaike N., Onodera H., Kogure K. Expression of 5-HT3 receptors in PC12 cells treated with NGF and 8-Br-cAMP. J Neurophysiol. 1992 Apr;67(4):812–819. doi: 10.1152/jn.1992.67.4.812. [DOI] [PubMed] [Google Scholar]
- Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottesfeld Z. Origin and distribution of noradrenergic innervation in the habenula: a neurochemical study. Brain Res. 1983 Sep 26;275(2):299–304. doi: 10.1016/0006-8993(83)90990-3. [DOI] [PubMed] [Google Scholar]
- Higashi H., Nishi S. 5-Hydroxytryptamine receptors of visceral primary afferent neurones on rabbit nodose ganglia. J Physiol. 1982 Feb;323:543–567. doi: 10.1113/jphysiol.1982.sp014091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito C., Fukuda A., Nabekura J., Oomura Y. Acetylcholine causes nicotinic depolarization in rat dorsal motor nucleus of the vagus, in vitro. Brain Res. 1989 Nov 27;503(1):44–48. doi: 10.1016/0006-8993(89)91701-0. [DOI] [PubMed] [Google Scholar]
- Jackisch R., Fehr R., Hertting G. Adenosine: an endogenous modulator of hippocampal noradrenaline release. Neuropharmacology. 1985 Jun;24(6):499–507. doi: 10.1016/0028-3908(85)90055-3. [DOI] [PubMed] [Google Scholar]
- Kalia M. Brain stem localization of vagal preganglionic neurons. J Auton Nerv Syst. 1981 Apr;3(2-4):451–481. doi: 10.1016/0165-1838(81)90081-3. [DOI] [PubMed] [Google Scholar]
- Krishtal O. A., Marchenko S. M., Pidoplichko V. I. Receptor for ATP in the membrane of mammalian sensory neurones. Neurosci Lett. 1983 Jan 31;35(1):41–45. doi: 10.1016/0304-3940(83)90524-4. [DOI] [PubMed] [Google Scholar]
- Leslie R. A., Reynolds D. J., Andrews P. L., Grahame-Smith D. G., Davis C. J., Harvey J. M. Evidence for presynaptic 5-hydroxytryptamine3 recognition sites on vagal afferent terminals in the brainstem of the ferret. Neuroscience. 1990;38(3):667–673. doi: 10.1016/0306-4522(90)90060-h. [DOI] [PubMed] [Google Scholar]
- Majid M. A., Okajima F., Kondo Y. Characterization of ATP receptor which mediates norepinephrine release in PC12 cells. Biochim Biophys Acta. 1992 Sep 9;1136(3):283–289. doi: 10.1016/0167-4889(92)90118-u. [DOI] [PubMed] [Google Scholar]
- Nabekura J., Ebihara S., Akaike N. Muscarinic receptor activation of potassium channels in rat dentate gyrus neurons. J Neurophysiol. 1993 Oct;70(4):1544–1552. doi: 10.1152/jn.1993.70.4.1544. [DOI] [PubMed] [Google Scholar]
- Nabekura J., Mizuno Y., Oomura Y. Inhibitory effect of somatostatin on vagal motoneurons in the rat brain stem in vitro. Am J Physiol. 1989 Jan;256(1 Pt 1):C155–C159. doi: 10.1152/ajpcell.1989.256.1.C155. [DOI] [PubMed] [Google Scholar]
- Nakazawa K., Fujimori K., Takanaka A., Inoue K. An ATP-activated conductance in pheochromocytoma cells and its suppression by extracellular calcium. J Physiol. 1990 Sep;428:257–272. doi: 10.1113/jphysiol.1990.sp018211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pratt G. D., Bowery N. G. The 5-HT3 receptor ligand, [3H]BRL 43694, binds to presynaptic sites in the nucleus tractus solitarius of the rat. Neuropharmacology. 1989 Dec;28(12):1367–1376. doi: 10.1016/0028-3908(89)90012-9. [DOI] [PubMed] [Google Scholar]
- Richardson P. J., Brown S. J. ATP release from affinity-purified rat cholinergic nerve terminals. J Neurochem. 1987 Feb;48(2):622–630. doi: 10.1111/j.1471-4159.1987.tb04138.x. [DOI] [PubMed] [Google Scholar]
- Ross C. A., Ruggiero D. A., Reis D. J. Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol. 1985 Dec 22;242(4):511–534. doi: 10.1002/cne.902420405. [DOI] [PubMed] [Google Scholar]
- Shen K. Z., North R. A. Excitation of rat locus coeruleus neurons by adenosine 5'-triphosphate: ionic mechanism and receptor characterization. J Neurosci. 1993 Mar;13(3):894–899. doi: 10.1523/JNEUROSCI.13-03-00894.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon J. R., Oderfeld-Nowak B., Felten D. L., Aprison M. H. Distribution of choline acetyltransferase, acetylcholinesterase, muscarinic receptor binding, and choline uptake in discrete areas of the rat medulla oblongata. Neurochem Res. 1981 May;6(5):497–505. doi: 10.1007/BF00964389. [DOI] [PubMed] [Google Scholar]
- Sofroniew M. V. Direct reciprocal connections between the bed nucleus of the stria terminalis and dorsomedial medulla oblongata: evidence from immunohistochemical detection of tracer proteins. J Comp Neurol. 1983 Feb 1;213(4):399–405. doi: 10.1002/cne.902130404. [DOI] [PubMed] [Google Scholar]
- Stone T. W., Taylor D. A. Antagonism by clonidine of neuronal depressant responses to adenosine, adenosine-5'-monophosphate and adenosine triphosphate. Br J Pharmacol. 1978 Nov;64(3):369–374. doi: 10.1111/j.1476-5381.1978.tb08659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ter Horst G. J., Toes G. J., Van Willigen J. D. Locus coeruleus projections to the dorsal motor vagus nucleus in the rat. Neuroscience. 1991;45(1):153–160. doi: 10.1016/0306-4522(91)90111-z. [DOI] [PubMed] [Google Scholar]
- Travagli R. A., Gillis R. A., Rossiter C. D., Vicini S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am J Physiol. 1991 Mar;260(3 Pt 1):G531–G536. doi: 10.1152/ajpgi.1991.260.3.G531. [DOI] [PubMed] [Google Scholar]
- Travagli R. A., Gillis R. A., Vicini S. Effects of thyrotropin-releasing hormone on neurons in rat dorsal motor nucleus of the vagus, in vitro. Am J Physiol. 1992 Oct;263(4 Pt 1):G508–G517. doi: 10.1152/ajpgi.1992.263.4.G508. [DOI] [PubMed] [Google Scholar]
- Tschöpl M., Harms L., Nörenberg W., Illes P. Excitatory effects of adenosine 5'-triphosphate on rat locus coeruleus neurones. Eur J Pharmacol. 1992 Mar 17;213(1):71–77. doi: 10.1016/0014-2999(92)90234-u. [DOI] [PubMed] [Google Scholar]
- Ueno S., Harata N., Inoue K., Akaike N. ATP-gated current in dissociated rat nucleus solitarii neurons. J Neurophysiol. 1992 Sep;68(3):778–785. doi: 10.1152/jn.1992.68.3.778. [DOI] [PubMed] [Google Scholar]
- Uneyama H., Uneyama C., Akaike N. Intracellular mechanisms of cytoplasmic Ca2+ oscillation in rat megakaryocyte. J Biol Chem. 1993 Jan 5;268(1):168–174. [PubMed] [Google Scholar]
- Waeber C., Dixon K., Hoyer D., Palacios J. M. Localisation by autoradiography of neuronal 5-HT3 receptors in the mouse CNS. Eur J Pharmacol. 1988 Jul 7;151(2):351–352. doi: 10.1016/0014-2999(88)90825-4. [DOI] [PubMed] [Google Scholar]
- van der Kooy D., Koda L. Y., McGinty J. F., Gerfen C. R., Bloom F. E. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol. 1984 Mar 20;224(1):1–24. doi: 10.1002/cne.902240102. [DOI] [PubMed] [Google Scholar]