Abstract
1. The effect of sodium influx on anoxic damage was investigated in rat hippocampal slices. Previous experiments demonstrated that a concentration of tetrodotoxin which blocks neuronal transmission protects against anoxic damage. In this study we examined low concentrations of lidocaine (lignocaine; which do not block neuronal transmission), for their effect on recovery of the evoked population spike recorded from the CA1 pyramidal cell layer. 2. Recovery of the population spike, measured 60 min after a 5 min anoxic period, was 4 +/- 2% of its preanoxic, predrug level. Lidocaine concentrations of 10, 50, and 100 microM significantly improved recovery to 56 +/- 12, 80 +/- 7 and 70 +/- 14%, respectively. 3. Lidocaine (10 microM) did not alter the size of the evoked response before anoxia and had no significant effect on potassium levels or calcium influx during anoxia. It did, however, reduce cellular sodium levels (146 +/- 7 vs. 202 +/- 12 nmol mg-1) and preserve ATP levels (2.17 +/- 0.07 vs. 1.78 +/- 0.07 nmol mg-1) during anoxia. All values were measured at the end of 5 min of anoxia except those for Ca2+ influx which were measured during 10 min of anoxia. 4. High concentrations of lidocaine (100 microM) did not improve recovery significantly over that observed with 10 microM. They also had no significantly greater effects on sodium levels than 10 microM lidocaine (137 +/- 12 vs. 146 +/- 7 nmol mg-1); however, 100 microM lidocaine significantly improved potassium (202 +/- 18 vs. 145 +/- 6 nmol mg-1) and ATP (2.57 +/- 0.06 vs. 2.17 +/- 0.07 nmol mg-1) levels, while reducing calcium influx (7.76 +/- 0.12 vs. 9.24 +/- 0.39 nmol mg-1 (10 min)-1) when compared with 10 microM lidocaine. 5. We conclude that sodium influx and ATP depletion are of major importance in anoxic damage since 10 microM lidocaine reduced these changes during anoxia and improved recovery of the population spike. In addition, our results indicate that the properties of the sodium channel are altered during anoxia, since sodium influx is blocked by a concentration of lidocaine that does not affect the population spike in the preanoxic period.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Astrup J., Skovsted P., Gjerris F., Sørensen H. R. Increase in extracellular potassium in the brain during circulatory arrest: effects of hypothermia, lidocaine, and thiopental. Anesthesiology. 1981 Sep;55(3):256–262. doi: 10.1097/00000542-198109000-00012. [DOI] [PubMed] [Google Scholar]
- Boening J. A., Kass I. S., Cottrell J. E., Chambers G. The effect of blocking sodium influx on anoxic damage in the rat hippocampal slice. Neuroscience. 1989;33(2):263–268. doi: 10.1016/0306-4522(89)90205-4. [DOI] [PubMed] [Google Scholar]
- Choi D. W. Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci. 1990 Aug;10(8):2493–2501. doi: 10.1523/JNEUROSCI.10-08-02493.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox S. E., Ranck J. B., Jr Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp Brain Res. 1981;41(3-4):399–410. doi: 10.1007/BF00238898. [DOI] [PubMed] [Google Scholar]
- Fujitani T., Adachi N., Miyazaki H., Liu K., Nakamura Y., Kataoka K., Arai T. Lidocaine protects hippocampal neurons against ischemic damage by preventing increase of extracellular excitatory amino acids: a microdialysis study in Mongolian gerbils. Neurosci Lett. 1994 Sep 26;179(1-2):91–94. doi: 10.1016/0304-3940(94)90942-3. [DOI] [PubMed] [Google Scholar]
- Hansen A. J. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985 Jan;65(1):101–148. doi: 10.1152/physrev.1985.65.1.101. [DOI] [PubMed] [Google Scholar]
- Hansen A. J., Olsen C. E. Brain extracellular space during spreading depression and ischemia. Acta Physiol Scand. 1980 Apr;108(4):355–365. doi: 10.1111/j.1748-1716.1980.tb06544.x. [DOI] [PubMed] [Google Scholar]
- Kaneda M., Oyama Y., Ikemoto Y., Akaike N. Blockade of the voltage-dependent sodium current in isolated rat hippocampal neurons by tetrodotoxin and lidocaine. Brain Res. 1989 Apr 10;484(1-2):348–351. doi: 10.1016/0006-8993(89)90379-x. [DOI] [PubMed] [Google Scholar]
- Kass I. S., Abramowicz A. E., Cottrell J. E., Amorim P., Chambers G. Anoxia reduces depolarization induced calcium uptake in the rat hippocampal slice. Brain Res. 1994 Jan 7;633(1-2):262–266. doi: 10.1016/0006-8993(94)91547-4. [DOI] [PubMed] [Google Scholar]
- Kass I. S., Abramowicz A. E., Cottrell J. E., Chambers G. The barbiturate thiopental reduces ATP levels during anoxia but improves electrophysiological recovery and ionic homeostasis in the rat hippocampal slice. Neuroscience. 1992 Aug;49(3):537–543. doi: 10.1016/0306-4522(92)90224-p. [DOI] [PubMed] [Google Scholar]
- Kass I. S., Lipton P. Calcium and long-term transmission damage following anoxia in dentate gyrus and CA1 regions of the rat hippocampal slice. J Physiol. 1986 Sep;378:313–334. doi: 10.1113/jphysiol.1986.sp016221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kass I. S., Lipton P. Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J Physiol. 1982 Nov;332:459–472. doi: 10.1113/jphysiol.1982.sp014424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kass I. S., Lipton P. Protection of hippocampal slices from young rats against anoxic transmission damage is due to better maintenance of ATP. J Physiol. 1989 Jun;413:1–11. doi: 10.1113/jphysiol.1989.sp017638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim-Lee M. H., Stokes B. T., McDonald J. S. Procaine, lidocaine, and hypothermia inhibit calcium paradox in glial cells. Anesth Analg. 1994 Oct;79(4):728–733. doi: 10.1213/00000539-199410000-00019. [DOI] [PubMed] [Google Scholar]
- Lobner D., Lipton P. Intracellular calcium levels and calcium fluxes in the CA1 region of the rat hippocampal slice during in vitro ischemia: relationship to electrophysiological cell damage. J Neurosci. 1993 Nov;13(11):4861–4871. doi: 10.1523/JNEUROSCI.13-11-04861.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas L. F., West C. A., Rigor B. M., Schurr A. Protection against cerebral hypoxia by local anesthetics: a study using brain slices. J Neurosci Methods. 1989 May;28(1-2):47–50. doi: 10.1016/0165-0270(89)90008-3. [DOI] [PubMed] [Google Scholar]
- Lund-Andersen H., Hertz L. Effects of potassium content in brain-cortex slices from adult rats. Exp Brain Res. 1970;11(2):199–212. doi: 10.1007/BF00234323. [DOI] [PubMed] [Google Scholar]
- Lust W. D., Feussner G. K., Barbehenn E. K., Passonneau J. V. The enzymatic measurement of adenine nucleotides and P-creatine in picomole amounts. Anal Biochem. 1981 Jan 15;110(2):258–266. doi: 10.1016/0003-2697(81)90144-5. [DOI] [PubMed] [Google Scholar]
- Lysko P. G., Webb C. L., Yue T. L., Gu J. L., Feuerstein G. Neuroprotective effects of tetrodotoxin as a Na+ channel modulator and glutamate release inhibitor in cultured rat cerebellar neurons and in gerbil global brain ischemia. Stroke. 1994 Dec;25(12):2476–2482. doi: 10.1161/01.str.25.12.2476. [DOI] [PubMed] [Google Scholar]
- Mitani A., Yanase H., Sakai K., Wake Y., Kataoka K. Origin of intracellular Ca2+ elevation induced by in vitro ischemia-like condition in hippocampal slices. Brain Res. 1993 Jan 22;601(1-2):103–110. doi: 10.1016/0006-8993(93)91700-3. [DOI] [PubMed] [Google Scholar]
- Pulsinelli W. A., Brierley J. B., Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982 May;11(5):491–498. doi: 10.1002/ana.410110509. [DOI] [PubMed] [Google Scholar]
- Raley-Susman K. M., Lipton P. In vitro ischemia and protein synthesis in the rat hippocampal slice: the role of calcium and NMDA receptor activation. Brain Res. 1990 May 7;515(1-2):27–38. doi: 10.1016/0006-8993(90)90572-s. [DOI] [PubMed] [Google Scholar]
- Roberts E. L., Jr, Sick T. J. Calcium-sensitive recovery of extracellular potassium and synaptic transmission in rat hippocampal slices exposed to brief anoxia. Brain Res. 1988 Jul 19;456(1):113–119. doi: 10.1016/0006-8993(88)90352-6. [DOI] [PubMed] [Google Scholar]
- Schurr A., Spears B., Reid K. H., West C. A., Edmonds H. L., Jr, Rigor B. M. Lidocaine depresses synaptic activity in the rat hippocampal slice. Anesthesiology. 1986 Apr;64(4):501–503. doi: 10.1097/00000542-198604000-00015. [DOI] [PubMed] [Google Scholar]
- Shokunbi M. T., Gelb A. W., Wu X. M., Miller D. J. Continuous lidocaine infusion and focal feline cerebral ischemia. Stroke. 1990 Jan;21(1):107–111. doi: 10.1161/01.str.21.1.107. [DOI] [PubMed] [Google Scholar]
- Siesjö B. K. Mechanisms of ischemic brain damage. Crit Care Med. 1988 Oct;16(10):954–963. doi: 10.1097/00003246-198810000-00006. [DOI] [PubMed] [Google Scholar]
- Siesjö B. K. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg. 1992 Aug;77(2):169–184. doi: 10.3171/jns.1992.77.2.0169. [DOI] [PubMed] [Google Scholar]
- Stys P. K., Waxman S. G., Ransom B. R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci. 1992 Feb;12(2):430–439. doi: 10.1523/JNEUROSCI.12-02-00430.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VANHARREVELD A., CROWELL J., MALHOTRA S. K. A STUDY OF EXTRACELLULAR SPACE IN CENTRAL NERVOUS TISSUE BY FREEZE-SUBSTITUTION. J Cell Biol. 1965 Apr;25:117–137. doi: 10.1083/jcb.25.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber M. L., Taylor C. P. Damage from oxygen and glucose deprivation in hippocampal slices is prevented by tetrodotoxin, lidocaine and phenytoin without blockade of action potentials. Brain Res. 1994 Nov 21;664(1-2):167–177. doi: 10.1016/0006-8993(94)91967-4. [DOI] [PubMed] [Google Scholar]
- Zola-Morgan S., Squire L. R., Amaral D. G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986 Oct;6(10):2950–2967. doi: 10.1523/JNEUROSCI.06-10-02950.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
